想要让教案更具实用性,教师可以结合学科特点进行个性化设计,教案应鼓励学生提出问题,以培养他们的批判性思维和创新能力,以下是小文学范文网小编精心为您推荐的人教版八上数学教案通用7篇,供大家参考。
人教版八上数学教案篇1
教学目标:
1、通过学生观察、操作等活动认识长方体,知道长方体的面、棱、顶点以及长、宽、高的含义,掌握长方体的基本特征,理解它们之间的关系。
2、学生在生活中进一步积累探索经验,增强空间观念,发展数学思维。
3、学生体会立体图形学习与实际生活的联系,感受其价值,增强数学的兴趣和学好数学的自信心。
教学重难点:
重点:探索长方体的特征。
难点:理解长方体面、棱、顶点之间的关系,建立空间想象。
教学准备:
每生准备一个长方体,长方体框架;师准备教学道具和课件。
教学过程:
一、导入
同学们,我们已经学过很多图形了,大家回想一下我们都学过哪些?现在老师在黑板上画出两个最简单的图形,请你们快速说出它们的名字。
(师在黑板上画出一个点,一条直线)
生:点、线
师:我的这个点和线都画在一个什么上?
生:黑板、面
师:对,都画在一个面上。现在请你们拿出身边的长方体,找一找长方体中的点、线、面。
师生摸一摸,指一指,说一说。
二、新授
师:长方体中的线有一个固定的名字叫做“棱”,长方体中的点也有一个固定的名字叫做“顶点”。
师:我们现在初步了解了长方体的面、棱、顶点。如果大家想更多的了解长方体,你能提出哪些问题呢?
生:长方体有几个面,几条棱,几个顶点……
师:大家提出的既有关于面、棱、顶点数量的问题,又有关于它们之间关系的问题。下面就请大家小组合作学习,解决课件中给出的这些问题。
小组合作学习,完成以下问题:
面1、长方体有几个面?
2、每个面是什么形状?
3、哪些面是完全相同的?
棱1、长方体有几条棱?
2、哪些棱长度相等?
顶点1、长方体有几个顶点?
你还有什么新的发现?棱是怎么形成的?顶点是怎么形成的?
师:我们先来解决一个最简单的问题,长方体有几个顶点?
生:8个
师:怎样有序地数?
生:可以先依次数上面的四个,再依次数下面的四个。
师:长方体有几个面呢?
生:6个
师:谁能有次序地数出这些面?
师:谁能用具体的方位名词有次序地数出来?
师:长方体有6个面,依次是前面、后面、左面、右面、上面、下面。
师:还可以怎么数?
师:我们在第一单元学习了观察物体,现在试着从一个角度观察我手中的长方体,你最多能看到几个面?
生:3个
师:这三个面的对面都看不到,所以用3乘2就是总数。用这样的方法也能数出长方体的面数。
师:每个面是什么形状?
生:长方形,有的长方体中也有正方形。
师:长方体的每个面都是长方形,特殊情况下有两个相对的面是正方形。
师:长方形哪些面是完全相同的?
生:前面和后面,左面和右面,上面和下面
师:你们说的前与后,左与右,上与下都是相对的关系,所以简单说就是相对的面完全相同。你们是怎么得出这个结论的?
生:我们是看出来的。
师:生活中我们经常有看错人的时候,所以用眼睛看出来的不一定正确,你们有什么方法能证明自己的结论是正确的吗?
生:可以把长方体拆开,拿相对的面对比,如果完全重合,就说明相对的面完全相同。
师:你的方法真棒,那我们就一起来操作和证明一下。
师:相对的两个面放在一起完全重合了,说明大家的结论是正确的。
师:我们来理解一下什么是完全相同?完全相同的两个面,它们的面积相等,周长相等,长相等,宽也相等。
师:关于长方体的棱,你们知道有几条吗?
生:12条
师:谁能有次序地、不重不漏地数出来?
请学生来数
师:刚刚那位同学的数法我再来展示一下,同学们仔细观察,他是分成几组来数的?每组有几条?
生:三组,每组有4条。
师:为什么要这样数?
生:因为每一组中的棱长度是相等的。
师:哪些位置的棱长度相等呢?
生:位置相对的棱
师:我们用尺子量一量是否相等。
师:确实,相对的四条棱长度相等。
师展示长方体框架:假如这个框架中缺少了一条棱,你能想象出缺的这条棱的样子吗?为什么?
生:因为相对的棱长度相等,可以通过相对的棱想象缺的那条棱的样子。
师:如果在一组相对的棱中去掉三根,剩一根,你能想象出去完整的长方体的样子吗?为什么?
生:能,可以通过剩下的那根,想象出跟它相对的其他三条棱的样子。
师:按这样的道理,我们在每一组棱中都去掉三根,依然可以想象出完整的长方体的样子。我来试试去掉这些棱后,会是什么样子。
生:只剩下三根棱。
师:这三根棱有什么特殊?
生:它们相交于一个顶点。
师:对。这是三条非常特殊的棱,我们把它们分别称作长方体的“长”“宽”“高”。也就是说相交于一个顶点的三条棱分别叫做长方体的“长”“宽”“高”。在一个长方体中,我们通常把竖着的这条棱叫做“高”,正对着我们的棱叫做“长”,“长”旁边的那条是“宽”。大家来指一指我手中的这个长方体的长、宽、高。
拿长方体模型横放、竖放、侧放,并让学生指出在不同摆放的情况下的长、宽、高,体会同一个长方体因摆放位置不同而引起的长宽高的变化。
师:根据相对的棱相等,所以“长”对面的棱也是“长”,“宽”对面的棱也是“宽”,“高”对面的棱也是“高”,由此可知,长方体有4条长,4条宽,4条高。共计12条。
师:如果让大家利用小木棒来制作一个长方体框架,思考一下需要几组木棒,共几根?在下面给出的木棒中你可以如何搭配来组建长方体,它们的长宽高分别是多少?
出示例题:
四根8厘米,八根3厘米,四根6厘米,两根5厘米。
生1:长8,宽3,高6
生2:长8,宽3,高3
生3:长6,宽3,高3
师:生2和生3搭建的长方体都是有两个相对的面是正方形的特殊长方体,想象一下,把长缩短到3厘米,这个长方体会变成什么样子?
生:变成了正方体
师:对,变成了长、宽、高都是3厘米的正方体,由此我们可以得出这样的结论:长、宽、高都相等的长方体是正方体,正方体是一种特殊的长方体
师:关于面、棱、顶点,它们之间有什么关系呢?棱和面有什么关系?棱和顶点有什么关系?
生:两个面相交的位置是棱,两条棱相交的位置是顶点。
巩固练习
书上例题1、2
小结
作业布置
练习册《长方体的认识》
人教版八上数学教案篇2
教学内容:
人教课标版教材三年级上册第八单元(p110—111)
教学目标:
1、通过练习让学生进一步感受可能性,知道事件发生的可能性是有大有小的。
2、通过实际操作活动,培养学生的动手实践能力,合作交流能力。
3、巩固本单元知识。
教学过程:
一、情境引入,回顾再现
师:同学们,通过前面的学习我们知道有些事情的发生是确定的,有些则是不确定的。哪位同学愿意用“一定”、“可能”、“不可能”等词语来描述生活中一些事情发生的可能性呢?(指2—3名同学举例,其他同学评判,教师适时点评。)
师:我们还知道事件发生的可能性有大有小。下面就请同学们猜一下三、一班的张晨同学做哪个游戏的可能性比较大?(大屏幕出示:大课间活动,三、一班的40名同学在操场上做游戏,有30人在丢手绢,6人在跳绳,4人在踢毽子。张晨是三、一班的学生,她做哪个游戏的可能性大?为什么?)
生1:张晨做丢手绢游戏的可能性大,因为……。
生2:……
生3:……
师:这节课我们就来针对这些内容进行相关练习。(引出并板书课题:可能性的练习。)
(设计意图:让学生通过对“一定”“可能”“不可能”等现象的描述和事件发生可能性大小的解答,回忆再现新授课中有关的知识和方法。)
二、分层练习,强化提高
师:首先,看一看同学们能不能做一名合格的小法官。(出示)
1、基本练习
(1)我是小法官。(快速抢答,看谁说的又对又快。)
①一周有七天。()
②人的一生中一定要吃饭。()
③小明长大后一定能当飞行员。()
④下周一一定是阴天。()
(2)从放5个红球和1个绿球的口袋中随意摸出一个球,摸出什么球的可能性更大些?(指生回答,重点说原因。)
师:刚才同学们的表现真棒!下面我们来做个游戏好吗?
2、综合练习
(1)课本110页第8题。
师:掷骰子游戏喜欢吗?请同学们拿出写有1—6这几个数字的骰子来,我们一起玩。
①让生说一说掷出后可能出现的结果有哪些?
②猜测试验后的结果会有什么特点?
③实践、记录、统计。(全班一起掷一次,师参与记录各个面出现的次数。)
④说说从统计数据中发现了什么?
⑤由于实验结果与理论概率存在差异,如果得不到预期结果,可以再让学生多掷次,增加实验总次数,尽量使实验结果接近理论概率。
(设计意图:让学生亲自动手实践,使学生进一步感受事件发生的'等可能性。)
(2)课本110页第9题。(出示主题图)
师:过元旦的时候,
三、一班用抽签的形式来决定每位同学所要表演的节目。其中讲故事5张,唱歌3张,跳舞1张。如果你是其中的一员,你最有可能表演什么节目?
生:我最有可能表演讲故事。
师:为什么?
生:因为讲故事的签比较多。
师:谁能用“最有可能”和“最不可能”说一说其它两个事件发生的可能性?
生:我觉得最有
可能抽到唱歌,最不可能抽到跳舞。
(3)课本111页第10题。
师:我这里有4个盒子,其中一个盒子里放有硬币,猜一猜可能在哪个盒子里?(注意:每个同学只能选择一次,不能重复选。)
①生猜。
②简单统计猜测情况。
③揭示结果。
④说一说为什么猜错的比猜对得多。(引导学生发现:硬币只能在4个盒子中的1个,有3个盒子中没有,所以猜错的人数比较多猜错的可能性大。)
师:同学们真聪明!考虑问题真全面。接下来老师提高一下难度,有没有信心做好?
3、提高练习
(1)课本111页第11题。
师:请同学们拿出自制的正方体来,在它的6个面上涂上红、蓝两种颜色,要使掷出的红色的可能性比蓝色大,应该怎样凃?
①生动手涂色。
②小组展示交流,说想法。
③集体展示交流凃法。(只要涂色后正方体的红面比蓝面多就行。)
(2)课本111页第12题。(出示)
①生独立思考应怎样填。
②小组合作完成。
③集体展示交流。(只要写有数字“1”的卡片数量最多,写有数字“5”的卡片数量最少就行。)
(设计意图:让学生通过动手、动脑,合作交流,汇报展示,使学生积极的参与到数学学习活动中,进一步体会事件发生的可能性是有大有小的。)
三、自主检测,评价完善
(一)自主检测
师;刚才同学们用所学的知识,解决了这么多的数学问题,真了不起。老师还为同学们准备了一组测试题,请同学们赶快大显身手吧!(让生做在测试纸上)
1、选择题。
①有一个盒子,里面装着4个白球和5个黄球,任意从盒子中取出一个,( )的可能性较大。
a、白球 b、蓝球 c、黄球
②把一些白色围棋子放在书包里,从中任意摸出一个,( )是白棋子。
a、可能 b、一定 c、不可能
③从8个红色的的玻璃球和2个黄色的玻璃球中任意摸出一个,找到( )色的玻璃球可能性更大些。
a、红色 b、蓝色 c 黄色
④从1个蓝色的玻璃球和10个白色的玻璃球中任意摸出一个,摸到( )玻璃球可能性更小一些。
a、白色 b、蓝色 c、红色
⑤把3个白球和5个红球放在盒子里,任意摸出一个,( )是蓝色的。
a、可能 b、一定 c、不可能
2、按要求凃一涂
(1)摸出的一定是
(2)摸出的不可能是
(3)摸出的可能是
(二)、评价完善。
生汇报答案,其余自我核对,纠正错误。
(设计意图:通过自主检测,进一步强化“双基”,找出存在的问题,订正错误,并体验学习成功的喜悦。)
四、归纳小结,课外延伸
1、归纳小结
师:这节课主要练习了什么内容?你最大的收获是什么?你觉得你表现的怎样?
人教版八上数学教案篇3
【教学内容】
除法的初步认识,用2~6的乘法口诀求商,解决问题。
【教学目标】
知识与能力:
1.让学生在具体情境中体会除法运算的含义。会读、写除法算式,知道除法算式各部分的名称。
2.使学生初步认识乘、除法之间的关系。能够比较熟练地用2~6的乘法口诀求商。
3.使学生初步学会根据除法的意义解决一些简单的实际问题。
过程与方法:
发现法,问题教学法,研究性学习,小组合作等方法。
情感与态度:
1.结合教学使学生受到爱学习.爱劳动、爱护大自然的教育。
2.培养学生认真观察、独立思考等良好的学习习惯。
【教学重难点】
让学生体会除法运算的意义,在理解的基础上掌握用2~6的乘法口诀求商的方法及解决问题。
除法的含义,用除法运算解决简单的实际问题。
【教具准备】
口算卡片,课本插图。
?课时按排】
本单元可用13课时进行教学。
除法的初步认识…………………………………… 6课时左右
用2~6的乘法口诀求商…………………………… 3课时左右
解决问题…………………………………………… 4课时左右
1.除法的初步认识
(1)平均分(一)
?教学内容】12页—14页例1、例2 做一做练习三1~3题
?教学目标】
知识与能力:通过生活中常见的“每份同样多”的势力和活动情境,建立平均分的.概念。
过程与方法:合作探究
情感与态度:让学生探索平均分的方法,会平均分,提高动手和合作能力。
【教学重点、难点】
建立平均分的概念,探索平均分的方法
【教具准备】实物投影
?学具准备】
每个小组12块糖.每个学生实物卡片.三角形.圆形学具若干
【教学过程】
一、情境引入,揭示课题:
教师:最近我们五小二年级一班要组织一次春游活动,我们帮他们分一分春游需要的物品,好吗?
请小组长来领要分的物品,(每个小组12块糖)
请学生试着分一分,要求要分得大家都满意。
学生先在小组中分,再请学生到前面展示分的结果。
多请几个小组,说说自己分的结果,预计都是每人分得3块糖.
教师:这样分大家都满意吗?为什么?
教师揭示课题:像这样把物品分成几份,每份分地同样多,就叫做平均分。(板书课题)
二、合作探索:
(一)分一分
1、每个小组8张面包的实物卡片,学生用卡片在小组里分一分,(要求平均分)分完后请学生展示分的过程,说说分的结果。
2、每个小组4张桔子的实物卡片,学生用卡片在小组里分一分,(要求平均分)分完后请学生展示分的过程,说说分的结果。
3、每个同学用自己手中的学具分一分,(要求平均分)分完后请学生展示分的过程,说说分的结果。
(二)找一找
想想生活中什么时候要平均分?是怎样分的?
先在小组里说说,再指名说。
(三)连一连、圈一圈
把10条鱼平均分在2个渔缸里,请学生连一连或圈一圈,
说说分的结果。
三、做一做
1、把12瓶矿泉水平均分成3份。说说你怎样分的。
2、练习三1~3
第1题:给每个花瓶里插上花,应该怎么插?如果要求每个花瓶里插上同样多的花,又应该怎么插?插几枝?
四、总结
人教版八上数学教案篇4
教学目标:
1.使学生能结合方格纸用两个数据来确定位置,能依据给定的数据在方格纸上确定位置。
2.通过学习活动,增强学生运用所学知识解决实际问题的能力,提高应用意识。
教学重点:
在方格纸上用数对确定点的位置
教学难点:
利用方格纸正确表示列与行。
教学准备:
教师准备:投影机。
学生准备:方格纸
教学过程
一、复习巩固
标出下列班上同学的位置(图略)
{借助教师操作台上的学生座位图,迅速将实际的具体情境数学化}
二、新知探究
(一)教学例2
1.我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。
2.依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)
(在教学的过程中,教师要特别强调0列、0行,并指导学生正确找出。)
3.同桌讨论说出其他场馆所在的位置,并指名回答。
4.学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”的位置。(投影讲评)
{充分利用学生已有的生活经验和知识,鼓励学生自主探索、合作交流。在教学时应充分利用这些经验和知识为学生提供探究的空间,让学生通过观察、分析、独立思考、合作交流等方式,将用生活经验描述位置上升为用数学方法确定位置,发展数学思考,培养空间观念。}(二)、课堂提高
练习一第6题
(1)独立写出图上各顶点的位置。
(2)顶点a向右平移5个单位,位置在哪里?哪个数据发生了改变?点a再向上平移5个单位,位置在哪里?哪个数据也发生了改变?
(3)照点a的方法平移点b和点c,得出平移后完整的三角形。
(4)观察平移前后的图形,说说你发现了什么?小组内相互说说。
(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)
{。让学生看到在平面上用数对表示点的位置的方法,架起了数与形之间的桥梁,加强了知识间的相互联系。}
三、当堂测评
练习一第4题
学生独立完成,然后同学之间互相检验交流,最后,教师再展示学生的.作品,学生评价。
练习一第5题
(1)学生自己在方格纸上画一个简单的多边形。各顶点用两个数据表示。
(2)同桌互相合作,一人描述,一人画图。
{继续渗透数形结合的思想.}
四、课堂自我评价
这节课你觉得自己表现得怎样?哪些方面还需要继续努力?
五、设计意图:
本节知识,我充分利用学生已有的生活经验和知识,从学生熟悉的座位顺序出发,让学生在口述“第几组几个”的练习过程中,潜移默化地建立起“第几列第几行”的概念,让学生从习惯上培养起先说“列”后说“行”的习惯。然后再过度到用网格图来表示位置,让学生懂得从网格坐标上找到相应的位置。这样由直观到抽象、由易到难,符合孩子的学习特点。
人教版八上数学教案篇5
本学期总第7课时
教学课题:百分数折扣
教学内容:第8页“折扣”、做一做及练习二第1至3题。
教学目标:知识与技能明确折扣的含义,能熟练地把折扣写成分数、百分数,正确解答有关折扣的实际问题。
过程与方法:学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。
情感态度与价值观:感受数学知识与生活的紧密联系,激发学习兴趣。
教学重点:会解答有关折扣的实际问题。
教学难点:合理、灵活地选择方法,解答有关折扣的实际问题。
教法与学法:引导交流,合作探究
教学准备:白板课件
教学过程:
一、情景导入
圣诞节期间各商家搞了哪些促销活动?谁来说说他们是怎样进行促销的?
二、新课讲授
1、理解“折扣”的含义。
(1)刚才大家调查到的打折是商家常用的手段,是一个商业用语,那么你所调查到的打折是什么意思呢?比如说打“七折”,你怎么理解?
(2)你们举的例子都很好,老师也搜集到某商场打七折的售价标签。(课件出示)
(3)引导提问:如果原价是10元的铅笔盒,打七折,猜一猜现价会是多少?如果原价是1元的'橡皮,打七折,现价又是多少?
(4)仔细观察,商品在打七折时,原价与现价有一个什么样的关系?
(5)学生动手操作、计算、讨论,找出规律:原价乘以70%恰好是标签的售价或现价除以原价大约都是70%。
(6)归纳定义。
通俗来讲,商店有时降价出售商品,叫做打折扣销售,通称“打折”。几折就是十分之几,也就是百分之几十。如八五折就是85%,九折就是90%。
2、解决实际问题。
(1)爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?
①导学生分析题意:打八五折怎么理解?是以谁为单位“1”?
②先让学生找出单位“1”,然后再找出数量关系式:原价×85%=实际售价
③学生独立根据数量关系式,列式解答。
④全班交流。根据学生的汇报,板书:
(2)爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?
①导学生理解题意:只花了九折的钱怎么理解?以谁为单位“1”?
②学生试算,独立列式。
③全班交流。根据学生的汇报并板书。
3、提高运用
在某商店促销活动时,原价200元的商品打九折出售,最后剩下的个,商家再次打八折出售,最后的几商品售价多少元?
引导学生分析,学生独立完成,再集体交流,让学生明确:“折上折”相当于连续求一个数的百分之几是多少。
三、巩固练习
1、完成教材第8页“做一做”练习题。
2、完成教材第13页练习二第1~3题。
四、课堂小结
通过这节课的学习你有什么收获?
人教版八上数学教案篇6
一、教学内容
课本 p27~30 例 1、例 2。
二、教学目标
1.知识与技能
使学生认识长方体和正方体,并掌握它们面、棱、顶点的特征以及长方体和正方体两者之间的关系。认识长方体的长、宽、高和正方体的棱长。
2.过程与方法
让学生经历探索认识长方体和正方体的过程,培养学生观察、操作、抽象、概括的能力,以及发展学生的空间观念和空间想象力。
3.情感、态度与价值观
使学生形成初步的空间观念,体验所学知识与现实生活的联系,能运用所学知识解决生活中简单的问题,从中获得价值体验。
三、重点难点
1.教学重点
使学生认识长方体和正方体,掌握它们的特征;认识长方体的长、宽、高和正方体的棱长。
2.教学难点
了解长方体和正方体的关系。
四、教学用具
自制课件,学具,长方体、正方体的物品。
五、教学设计
(一)复习准备
(视频脚本三:第三单元长正方体:1.2)
1.我们学过哪些平面图形?长方形和正方形有什么关系?
2.出示收集的各种物体:这些图形同刚才的图形有什么不同?
[设计目的是沟通新旧知识间的联系。]
(二)探索新知
1.认识长方体和正方体。
(1)师出示一些教具,学生拿出收集的学具。
将这些物体进行分类,可以分为几类?
(2)学生小组研究汇报:根据围成的面的不同可以分为:由长方形围成和由正方形围成的。(板书:长方体和正方体)
(3)日常生活中你见过哪些物体是长方体和正方体?
(长正方体认识:动画场景1)
(4)长方体有什么特征呢?什么样的物体叫长方体呢?下面我们来继续研究这个问题。
(5)关于长方体你想学习哪些知识?
师拿出长方体教具,学生拿学具,师给出面、棱、顶点、相对的面、相对的棱的概念,并板书。
2.长方体的特征。
(长正方体认识:动画场景3)
(1)长方体有几个面?(6 个)你来猜想一下长方体的面有什么特点?
(2)怎样验证你的猜想?
3.学生验证。
可能会有以下方法:
(1)通过量长和宽计算;
(2)剪下比一比;
(3)将其中一个面描在纸上,用另一个面对比。
4.汇报结论:长方体的 6 个面都是长方形,相对的面面积相等。
有不同的发现吗?(也有相对的两个面是正方形)
5.教师重点带领学生研究相对的面是正方形的长方体。请大家再来仔细观察这个长方体,还有什么特征?
6.长方体的棱有什么特点?怎样验证?
(长正方体框架制作:动画脚本---场景一、二)
7.学生利用学具验证。
(1)测量;
(2)用学具插一个长方体后,再比较棱的长短。
8.汇报:怎样插长方体,用了什么材料?长方体的棱有什么特点?
12 条棱,相对的 4 条棱相等。
9.重点研究相对的面是正方形的长方体的棱的特点。
10.填写总结报告。
11.认识长、宽、高。
(1)相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
(2)学生指出自己手中长方体的长、宽、高,并量出长短。
3.正方体的特征。
(长正方体认识:动画场景4)
(1)学生独立研究正方体的特征并填表。
(长正方体框架制作:动画脚本---场景三)
(2)汇报你们是怎样研究的?
4.长方体和正方体的关系。
比较长方体和正方体,它们有什么相同点和不同点?长方体和正方体有什么关系?
相同点:6 个面,12 条棱,8 个顶点。
不同点:
(三)巩固练习
1.下面的图形中,是长方体的在括号里画“△”,是正方体的在括号里画“○”。
2.写出下面各图的名称。
3.观察实物图,然后填空。
(1)橡皮的形状是( )。
(2)橡皮的前面是( )形,长是( )厘米,宽是( )厘米,与( )的面积相等。
(3)橡皮的右侧面是( )形,长是( )厘米,宽是( )厘米,与( )的面积相等。
(4)橡皮的上面是( )形,长是( )厘米,宽是( )厘米,与( )的面积相等。
4.看图填空。(单位:厘米)
长( ) 长( ) 长( )
宽( ) 宽( ) 宽( )
高( ) 高( ) 高( )
5.判断。(对的在括号里划“√”,错的划“×”。)
(1)一张很薄的塑料纸,只有正反两个面。 ( )
(2)正方体是特殊的长方体。 ( )
(3)一个长方体中有四个面完全一样,那么另外两个面一定是正方形。 ( )
(4)用一根长 120 厘米的铁丝围成一个正方体框架,正方体的棱长为 20 厘米。 ( )
(四)全课总结
在这节课上,使你印象最深的是什么?你还有什么需要解决的问题吗?
(五)板书设计
长方体和正方体的认识
人教版八上数学教案篇7
教学内容:教科书第5354页上面的内容,练习十二的第16题。
教学目的:
1.使学生在已学过的减法知识的基础上,概括出减法的意义,减法的认识从感性上升到理性。
2.使学生理解并掌握加减法之间的关系。
教学重点:减法的意义
教学难点:加减法之间的关系
教具准备:小黑板
教学过程:
一、教学减法的意义
1.减法的意义
教师:我们在前三年已经学过减法的计算方法,现在来学习一些有关减法的规律性知识,首先学会减法的意义。
教师出示第53页上面的题:
(1)一班有男生24人,女生有19人。24+19=43(人)
全班共有多少人? 加数 + 加数 = 和
(2)一班有43人,其中男生24人,43 + 24 = 19(人)
女生有多少人? 和 - 加数 = 加数
(3)一班有43人,其中女生19人。43 -19 = 2 4(人)
男生有多少人? 和 - 加数 = 加数
先做第(1)题,让学生自己分析数量关系,进行解答,然后提问:
这道题为什么用加法计算?
谁能说出加法算式中各部分的名称?
学生回答后,教师在第(1)题的.右边板书出加法算式,并在算式下面写出加数、加数、和(如右上)。
接着学生解答第(2)、(3)题,然后回答:
与第(1)题比较,第(2)、(3)题是已知什么,求什么?
用什么方法计算?
引导学生说出第(1)题是已知男生和女生人数,求全班人数用加法,第(2)、(3)题是已知全班学生人数和男生或女生人数,反过来求女生或男生人数,都用减法计算。教师板书出第(2)、(3)题的减法算式(如右上)。
然后教师提问:
如果撇开题里讲的具体的事,每道题各是已知什么,求什么?
启发学生说出:第(1)题是已知两个加数,求它们的和,用加法;第(2)、(3)题都是已知和与其中一个加数,求另一个加数,用减法。
学生回答后,教师在第(2)、(3)题的算式下面注出和、加数、加数(如右上。)然后启发学生想:
根据第(2)、(3)题的算式与第(1)题的算式的联系,你能说一说减法是什么样的运算吗?
学生回答后,教师进行总结:减法是已知两个数的和与其中的一个加数,求另一个加数的运算。
让学生看书上第54页,读一读书的结语。然后提问:
在减去的已知数叫做什么?(被减数。)
要减去的已知加数叫做什么?(减数。)
要求的末知加数叫做什么?(差。)
教师说明:在减法,已知的和叫做被减数,减去的已知加数叫做减数,求出的未知加数叫做差。减法是加法的逆运算。逆就是相反的意思,逆运算就是相反的运算。我们可以通过上面的例子来理解。第(1)题用加法计算,第(2)、(3)题都用减法计算,第(2)、(3)题与第(1)题比较,第(1)题的问题在第(2)、(3)题中变成了已知条件,第(1)题中的其中一个已知条件在第(2)、(3)题中变成问题。也就是说,减法中的已知条件和问题与加法中的已知条件和问题正好相反,在加法中已知的,在减法中变成了未知的,在加法中未知的,在减法中变成了已知的。所以减法是与加法相反的运算,通常叫做逆运算。
2.练习
(1)做第54页上的做一做。
要让学生根据减法的意义说明各题的得数是怎么得来的。发现问题及时纠正。
(2)做练习十二的第1题。
要让学生应用减法的意义说明各题为什么用减法计算。在语言的叙述上,尽量紧扣减法的意义,逐步培养学生运用概念说理的能力。如第(1)题,可以启发学生说出:因为已知小明和小绅的邮票张数的和,又知道小明的邮票张数,要求小强的邮票张数,就是已知和(小明和小强的邮票张数的和)与一个加数(小明的邮票张数),求另一个加数(小绅的邮票张数),所以用减法法算。
二、教学0在减法中的特性
提问:
在加法中关于0的运算有几种情况?(两种)
谁能举例说明?(7+0=7,0+0=0。)
根据减法是加法的逆运算,那么减法中关于0的运算有哪几种情况?
引导学生写出下面三种情况:
70=7,77=0,00=0
然后引导学生归纳:
我们先来看第一种情况:70=7,那么80等于几?90呢?任意一个数减去0得多少?用一句话说就是。
再来看第二、三种情况:77=0,00=0,任意一个数减去它自己等于多少?也就是当被减数时,差怎样?
最后,概括成两条:
1.一个减法去0,还得原数;
2.被减数等于减数、差是0。
三、教学加、减法各部分间的关系
2. 加法各部分间的关系。
提问:
我们已经学过加、减法各部分间的关系,你们还记得吗?
谁能说出加法各部分间的最基本的关系是什么?
知道和与其中一个加数,如何求另一个加数?
随着学生的回答,教师板书出加法各部分间的关系:
2.减法各部分间的关系。
提问:
减法中各部分间的最基本关系是什么?
知道被减数和减数,怎样求差?
知道被减数和差,怎样求减数??
知道减数和差,怎样求被减数??
学生边回答教师边进行归纳,整理出下面的关系式:
3.完成练习十二的第2、3题。
这两道题,既可以根据减法各部分间的关系说明,也可以用减法的意义说明。例如,第2题,根据2100690=1405写出一道加法算式和一道减法算式。既可以把2100、695、1405分别看作被减数、减数、差,运用减法各部分间的关系来做,又可以把它们分别看作和、加数、加数,运用减法的意义来完成。
4.加、减法各部分间关系的应用。
教师:我们学过了这些关系,可以对加、减法的计算进行验算。
(1)加法的验算。
教师板书:1 2 3 4 验算:2 0 7 9 2 0 7 9
+ 8 4 5 8 4 5 1 2 3 4
2 0 7 9 1 2 3 4 8 4 5
让学生用以前学过的验算方法进行验算,并回答用加法验算加法的方法的方法应用的是什么运算定律(加法交换律)。然后提问:
还可以怎样验算?(用减法验算加法。)让学生板演(如上右)。
应用的是什么知识?(加法中各部分间的关系:和 一个加数 = 另一个加数。)
向学生说明:因为加数有两个(845,1234),验算时用和(20xx)减去哪一个加数都可以,因而用减法验算加法可以任选一个加数作减数来进行验算。
(2)减法的验算。
教师板书:1 2 3 4 验算: 2 4 7 1 2 3 4
9 8 7 + 9 8 72 4 7
2 4 7 1 2 3 4 9 8 7
让学生计算,并用学过的知识进行验算。教师板书出验算的竖式(如上右),让学生说一说每种验算方法应用了什么知识。
然后教师指出:验算减法,可以用减法中各部分间的关系。用算出的差和减数相加,看是不是等于被减数;或者从被减数里减去算出的差,看是不是等于减数,都可以用来验算减法。
四、巩固练习
完成练习十二的第56题。
1.第5题,笔算时要求计算正确,并注意迅速;用珠算验算时,要提醒学生注意定好个位,验算的方法有些题可以由教师适当指定一种,其它的题由学生自己任意选用。
2.第6题,先让学生明确表中的a+b表示两个数的和。学生填完后,先说一说是怎样想的,然后让还生观察:每组数同第一组比较,哪个数变化了?加数变化后,和是怎么变化的?