6的乘法教案优秀8篇

时间:2025-03-14 作者:Youaremine

写一份清晰的教案能够提升课堂氛围,增强学生的参与感,优秀的教案应结合学生的兴趣,以激发他们的学习热情和主动性,以下是小文学范文网小编精心为您推荐的6的乘法教案优秀8篇,供大家参考。

6的乘法教案优秀8篇

6的乘法教案篇1

教学目标

使学生理解分数乘分数的法则适用于分数和整数相乘,提高分数乘法计算的熟练程度。

教学重难点

用分数乘分数的法则计算分数和整数相乘。

教学准备

教学过程设计

教学内容

师生活动

备注

一、 引入新课

二、教学新课

三、巩固练习。

四、课堂小结

五、作业

1、在分数乘法里,我们学过哪几种情况的计算?

2、把下面的数改写成分母是1的假分数。(口答)

36813

3、把下面的乘法算式改写成分数乘分数的形式。

2/11×36×

上面两题都是什么数和什么数相乘?

怎样改写成分数乘分数的形式?

为什么可以这样改写?这就把分数和整数相乘改写成了怎样的数相乘?

1、统一法则

由于整数可以看成分母是1的分数,所以分数和整数相乘就可以改写成分数乘分数,按分数乘分数的法则来计算。这就是说,分数乘分数的计算法则,也适用于分数和整数相乘。

2、引导计算

把这里的两道分数和整数相乘的题按分数乘分数的法则计算出结果。

说说为什么?

3、教学约分方法

分数乘法计算时,为了简便,还可以直接约分。

看课本10页上的计算。

说说是怎样直接约分的?

1、练一练上下练习

2、练习二7说出错误和改正的方法。

3、练习二8

前2题:每组里哪几题可以直接约分,那些不能,并说明理由。

后2题:说说有什么不同的地方,并口算出结果。

4、练习二9口算

5、练习二11自己练习,说说想法

练习二10

板书约分、计算过程。

课后感受

由于前面的基础较好,学生学起来挺轻松,但计算方面还有待加强。

6的乘法教案篇2

教学目标

1.结合具体情境,探索并理解分数乘分数的意义;

2.探索并掌握分数乘分数的计算方法,并能正确计算;

3.能解决简单的分数与分数相乘的实际问题,体会数学与生活的密切联系。

养成教育训练点:

教学重点、难点

1.结合具体情境,探索并理解分数乘分数的意义;

2.探索并掌握分数乘分数的计算方法,并能正确计算;

教学准备:

1.每人准备一条约10厘米长的纸条;

2.每人准备5张长方形的纸。

教学过程:

一、探索分数乘分数的意义和计算方法。

1.先让学生读一读教科书第7页的一段话。再让学生拿出课前准备的一张纸条,按照例题所述剪一剪。

剪好后,师问:怎样列式求“剩下的部分占这张纸条的几分之几?”

并根据剪的结果写出得数。

1/2×1/2=14×1/2=1/8

学生列出算式后,师问:为什么用乘法计算?

引导学生理解,求剩下的部分占这张纸条的几分之几就是求1/2的1/2是多少,与上节课学习的求一个数的几分之几的意义相同,所以用乘法计算。

折一折,涂一涂3/4×1/4-=?

让学生拿出课前准备好的一张长方形纸,按照教科书的要求折一折,涂一涂。

讨论:(1)请你说一说,红色部分占斜线部分的几分之几?占整张纸的几分之几?

(2)你能按照上面的方法先涂出1/4,再涂出1/4的3/4吗?

做一做:按照上面的方法折一折,想一想,并算出结果。

2/3×16×1/3

说一说:你能总结分数与分数相乘的计算方法吗?

小结:分数与分数相乘,分子与分子相乘的积作分子,分母与分母相乘的积作分母。

想一想:此法与分数与整数相乘的方法有矛盾吗?

试一试:

1/4×2528×5/14

强调:能约分的要先约分。

二、课堂练习

1.计算练习。

教科书第8页“练一练”第2题。

学生计算后观察:分数相乘的积一定小于每一个乘数吗?

2.解决问题。

(1)教科书第8--9页“练一练”第3、4、5、6、7题。

学生完成后,说说解题思路。

(2)教科书第9页数学故事“唐僧分瓜”。

板书设计:

分数乘分数的运算法则:分子相乘,分母相乘,能约分的要约分。

6的乘法教案篇3

本课题教时数:1本教时为第1教时备课日期9月17日

教学目标

进一步掌握分数数据的一般应用题的解题方法;进一步掌握分数乘法应用题的数量关系和解题思路,能正确解答分数乘法应用题。

教学重难点

进一步掌握分数乘法应用题的数量关系和解题思路,能正确解答分数乘法应用题。

教学准备

教学过程设计

教学内容

师生活动

备注

一、 揭题

二基本联系

三、合练习

四、堂小结

五、作业

这节课,我们复习分数乘法应用题,通过复习,我们要进一步掌握分数乘法应用题的数量关系和解题思路,能正确解答分数乘法应用题。

1、提问:解答分数应用题的关键是什么?

2、根据条件找单位1,说说数量关系式

(题目见幻灯课件)

3、解答应用题

例1、从甲地到乙地公路长180千米,一辆汽车已经行了全程的',已经行了多少千米?

问:这道题可以怎样想?为什么用乘法算?

1、对比练习

做复习题第9题

问:这两题有什么相同的地方和不同的地方?

在解法上有什么相同的地方?

2、做复习第10题

让学生说说是怎么想的?

追问:第一步要求什么?把哪个数量看作单位1第二步求什么?又是把哪个数量看作单位1?

3、做复习第11题

4、做复习第12题

讨论:有什么办法知道哪一辆车离中点近一些?

这堂课复习了什么内容?分数乘法应用题的解题关键是什么?基本数量关系是怎样的?连续求一个数的几分之几的分数连乘应用题要怎样解答?

复习第7、8题

课后感受

要让学生学会想到有困难时可借助线段图帮助理解。

授课日期9月23日

6的乘法教案篇4

教学内容:教学第84页的例3,完成随后的“练一练”和练习十六第5—9题。

教学目标:

1、使学生理解并掌握用分数乘法和加、减法解决一些稍复杂的实际问题。

2、使学生进一步积累解决问题的策略,增强数学应用意识。

教学过程:

一、复习导入

林阳小学去年有24个班级,今年的班级数比去年增加了。今年比去年增加了多少个班级?

独立解答,说说“今年的班级数比去年增加了”的含义及解题思路。

如果把问题改成:“今年一共有多少个班级?”就成了今天我们要研究的新内容了。

二、教学例3

1、出示例3

林阳小学去年有24个班级,今年的班级数比去年增加了。今年一共有多少个班级?

(1)比较复习题与例3的不同。

问题不同:复习题要求“今年比去年增加了多少个班级?”而例3要求“今年一共有多少个班级?”

(2)说说“今年的班级数比去年增加了”的含义。

是哪两个量比较的结果?这两个量比时把哪个量看作单位“1”?单位“1”的是哪个量?

(3)让学生在线段图上表示出今年班级的数量。

(4)要求“今年一共有多少个班级?”可以先算什么?并列出综合算式。

板书:24+24,说说24的含义,独立解答。

(5)(5)想一想,还可以怎样计算?

板书:24(1+),说说(1+)的含义,独立解答。

(6)小结:怎样解答这类应用题?

三、巩固练习

1、做练一练的第1题。

先说一说可以怎样想,再独立解答。

2、做练习十六的第5题。

独立完成,可以先画图思考,再列式解答。

比较两题的解法有什么联系和区别。

3、做练习十六的第8题。

让学生先画线段图表示两题中的已知条件和所求问题,再根据线段图说说这两小题中的数量关系有什么不同,最后再列式解答。

比较两题的'解法有什么联系和区别。

4、做练习十六的第9题。

先让学生适当整理题中的条件和问题,再引导学生根据需要解决的问题选择合适的条件解答相应的问题。

比较两题的解法有什么联系和区别。

四、全课小结,揭示课题。

通过这节课的学习,你有什么收获?在解题时要注意什么?

结合学生的回答,揭题板题。

五、课堂作业

做练习十六的第6、7题。

6的乘法教案篇5

教学目的:使学生通过复习和分数乘法的计算、解答分数乘法应用题以及求倒数,培养学生综合运用知识的能力,发展学生的思维。 .

教学过程:

一、基训

a、1、填》、《、=a》b》0

4/5a/b( )a/b

4/5b/a( )b/a

b( )4/5

2、一个真分数乘以一个假分数,结果大于真分数,对吗?

3、a、b互为倒数,那么1/a、1/b也互为倒数,对吗?

b、 1.分数乘以整数的意义是什么?

2.一个数乘以分数的意义是什么?一个数乘以分数的计算法则是什么?

3.计算带分数的乘法应注意些什么?

4.分数乘法的简便运算可以应用哪些运算定律?

5.解答分数乘法应用题的关键是什么?

6.倒数的意义是什么?

学生回答这些问题时,只要意思说得正确就可以了。有些问题还可以问一些与之相

关的问题,如运算定律的表达式以及字母可以表示什么数等等。

二、综合练习

1.找1。

甲是乙的35 。乙是甲的35 。

甲比乙的'35 多1。乙比甲的35 少1。

甲的35 和乙同样多。

学生独立判断,集体订正。让学生说说是怎样判断的。教师可再补充几题:

2.做口算练习。

3.求下面各数的倒数。

2/7 1/9 6 20 0.6

学生独立解答,教师巡视,发现问题及时纠正。

4.小红体重42千克,小云体重40千克,小明的体重是小红和小云体重和的1/2,三人共重多少?

5.已知3=11/12b=3/3c,a、b、c都不是0,谁大?

三、小结(略)

四、补充作业。

6的乘法教案篇6

教学目标:

1.组织学生动手实践、自主探究,明确把谁看作单位“1”,引导学生采用数形结合的方法——画线段图分析数量之间的关系。

2.引导学生从分数乘法意义的角度思考,理解“求一个数的几分之几是多少”应该用乘法计算,学会解决“求一个数的几分之几是多少”的实际问题。

3.使学生能综合运用所学的知识解决一些简单的问题,逐渐形成技能,增强应用意识;引导学生形成一些解决问题的策略,促进学生分析、判断和推理能力的发展。

重点难点:

1.掌握解决求一个数的几分之几是多少的方法,能解决相关实际问题;

2.理解算理,会用线段图正确地分析题意。

教学方法:

讲授法、讨论法、谈话法、探究法

教学准备:

教师准备多媒体课件。

教学过程:

一、回顾旧知,导入新课

谈话:我们在信息窗1和信息窗2已经初步解决了分数乘整数和分数乘分数的问题,还会做吗?

出示练习:20的4/5是多少?6的2/3 是多少?

请同学说一说这两个题为什么用乘法计算。

谈话:同学们,我们知道,已知求一个数的几分之几是多少,用乘法计算。这是乘法意义的扩展出现的新问题,运用这一知识还可以解决什么问题呢?今天我们就来一起研究。

二、合作探究,获取新知

(一)创设情境,提出问题

谈话:在学校举行的泥塑大赛中,同学们制作出许多精美

的作品,请看大屏幕。

出示课本10页的情境图和信息。

谈话:从图中你获取了哪些信息?

谈话:根据上面的信息你能提出什么数学问题?

学生提出问题,教师板书:一班男生做了多少件?二班女生做了多少件?

谈话:同学们提的问题比较准确,下面我们分别来解决这些问题。

(二)探究方法,建立模型

1.解决第一个问题:一班男生做了多少件?

谈话:请同学们尝试用自己喜欢的方法先来分析题目中数量之间的关系,再试着解决这个问题,不仅要得出答案,还要把道理说清楚。

(1)讨论操作。学生分小组进行尝试活动,教师巡视指导,了解信息。

(2)小组内说想法。

(3)交流展示。指名到展示台前进行汇报。

方法一:画线段图分析数量关系

谈话:你是怎样画图的?先画什么?再画什么?怎样想的?

学生回答的过程中,教师重点引领学生理解谁是找单位“1”,如何找单位“1”?如何在线段图中表示出已知条件“3/5”?

谈话:线段图是个很好的工具,同学们用的非常棒!它可以清楚表示出题中数量间的关系,这个工具用的好,即使以后解决一些复杂的问题也会得心应手。

方法二:不借助于直观图,直接列式解决

谈话:你是怎样想的?教师适时引领:题中哪句话是关键句?谁是单位“1”?“3/5”这个分数在题中的具体意义是什么?为什么用乘法做?

(男生做了总数的3/5,总数是单位“1”,把总数平均分成5 份,求其中的3份,也就是求15的3/5是多少,所以15×3/5)

2.学生自己解决第二个问题:二班女生做了多少件?

谈话:小组交流,自己想办法来分析题意,解决问题。组织学生汇报交流,说自己的分析思路,其他小组可以给予完善补充。

着重引导学生理解:谁是单位“1”?怎么找单位“1”?为什么画两条线段?结合学生汇报,教师课件动态演示p11图示

(三)观察比较

谈话:你在分析解决这两个问题时,有哪些相同点?哪些不同点?

学生回答时,教师适时引领:相同点都是“求一个数的几分之几是多少”,用乘法做;不同点是第一组是部分与整体的关系,通常画一条线段图来表示它们之间的关系,第二组是两种量之间的关系,通常画两条线段图来表示它们之间的关系。画线段图时通常先画出表示单位“1”的量。

三、应用模型,解决问题

1.课本11页自主练习2:出示短吻鳄照片

帮助学生理解题意,引导学生利用画线段图的办法分析数量关系,自己列式解决问题。

2.自主练习4:这一题和第2题属于同一类型,都是研究部分与整体的关系,画一条线段图,让学生自主完成,全班交流自己的想法和思路。

3.自主练习

这一题与前两题有什么不同之处?研究的是两个数量之间的关系,应该怎样用线段图表示?

尝试自主解决,全班交流,说出自己的想法和思路。

四、引导总结,构建网络

谈话:我们应该如何解决“求一个数的几分之几是多少”的问题?(引导学生总结解决问题的方法)

五、作业布置

自主练习5、6题

板书设计:

求一个数的几分之几是多少”的实际问题

6的乘法教案篇7

教学内容:人教版小学数学教材六年级上册第2~3页例1、例2及相关练习。

教学目标:

1.联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求“这个数的几分之几是多少”。

2.让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。

3.能利用所学知识解决生活中的简单问题,并进一步培养学生的分析和推理能力。

教学重点:掌握分数乘整数的计算方法。

教学难点:理解分数乘整数和一个数乘分数的意义。

教学准备:课件。

教学过程:

一、情境创设,探求新知

(一)探索分数乘整数的意义

1.教学例1(课件出示情景图)

师:仔细观察,从图中能得到哪些数学信息?这里的“

个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)

师:想一想,你还能找出不一样的方法验证你的计算结果吗?

2.小组交流,汇报结果

3.比较分析

师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?预设:

生1:每个人吃个,3个人就是3个相加。

生2:3个个相加也可以用乘法表示为

提出质疑:3个

相加的和可以用乘法计算吗?为什么?

预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。

引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)

师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?

引导说出:这两个式子都可以表示“求3个

相加是多少”。

师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。

4.归纳小结

通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。

?设计意图】呈现生活情景,引导学生观察思考“一共吃了多少个?”,使学生迅速进入学习状态。以原有的知识和经验为基础,经历独立思考、自主计算并验证、小组交流等环节,鼓励学生大胆地呈现个性化的方法,兼顾了不同层次的学习状态。采用因势利导的方式,通过比较分析沟通新旧知识间的联系,引导学生自主得出结论,加深了对分数乘整数意义的理解。

(二)分数乘整数的计算方法

1.不同方法呈现和比较

师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,

的计算过程用式子该如何表示?预设:

生1:按照加法计算

师:比较一下,这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个

2.归纳算法

师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢?

引导说出:用分子与整数相乘的积作分子,分母不变。(板书)

3.先约分再计算的教学

师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?

预设:一种算法是先计算再约分,另一种是先约分再计算。

师:比较一下,你认为哪一种方法更简单?为什么?

小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。

?设计意图】通过比较,明确了自主探索的方向,使得对算法的感知上升到理解。教学过程中有意识地留给学生充足的思考时间,最大程度地发挥学生的主体性。“为什么分母不变,只用分子与整数相乘”这是教学的难点,通过多次追问,适度引导转化,促进学生的理解。对于“先约分再计算”这种方法的教学,充分利用课堂生成资源,引导学生经历观察与思考的过程,从而使学生“知其然”,更“知其所以然”。

二、巩固练习,强化新知

1.例1“做一做”第1题

师:说出你的思考过程。

2.例1“做一做”第2题

师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。)

三、探索一个数乘分数的意义

教学例2(课件出示情景图)

(1)师:根据提供的信息你能提出什么问题?该怎样计算?说说你的想法。

预设1:求3桶共有多少升?就是求3个12 l的和是多少。

预设2:还可以说成求12 l的3倍是多少。

预设3:单位量×数量=总量,所以12×3=36(l)。

(2)师:我们再来看这个问题,你能列出算式吗?(学生思考,自主列式。)

交流:是根据什么列式的?引导说出思考的过程并板书:“求12 l的一半,就是求12 l的

是多少。”

(3)出示第2小题学生自练。引导说出:“12×

表示求12 l的

是多少。”在这里都是把12 l看作单位“1”。

(4)师:依据单位量×数量=总量,你还能提出类似的问题并解决吗?(学生练习,交流。)

归纳小结:在这里,我们依据单位量×数量=总量的关系式可以得出:一个数乘几分之几表示的是求这个数的几分之几是多少。

四、课堂练习,深化理解

1.出示例2“做一做”。一袋面粉重3千克。已经吃了它的

,吃了多少千克?

师:你能说说这个算式表示的意义吗?“求3千克的

是多少。”

2.比较两种意义

出示:一袋面包重

千克,3袋重多少千克?

师:列出算式,并与前一个式子进行比较。这两个式子有什么不同?

预设1:一个是分数乘整数,另一个是整数乘分数。

预设2:它们表示的意义相同但有所区别。

引导说出:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算(或者就是求一个数的几倍是多少)。而一个数乘分数的意义表示的是求这个数的几分之几是多少。

师:那么,它们有什么是相同的呢?(计算方法和结果)

?设计意图】对一个数乘分数意义的理解,从复习旧知导入,依据单位量×数量=总量这一数量关系,分别列出相应的乘法算式,在此基础上,重点让学生说出解决后两个问题列式的依据是什么?再通过尝试练习和交流,不断加深学生的感性认识,丰富归纳的素材,最终导出此类分数乘法的意义。比较的环节充分挖掘教材资源,通过对两种不同算式的分析比较,抽象出两个算式的共同点,异中求同,进而深化学生对分数乘法意义的理解。

五、联系实际,灵活运用

1.算式

可以列成 × ,表示 ;或者表示 ;

也可以列成 × ,表示 。

师:选择一个算式进行计算,想一想,计算时要注意什么?

2.比较练习

(1)一堆煤有5吨,用去了

,用去了多少吨?

(2)一堆煤有

吨,5堆这样的煤有多少吨?

你能编写出类似的问题并加以解决吗?

3.拓展练习

1只树袋熊一天大约吃

kg桉树叶。10只树袋熊一星期吃多少千克桉树叶?

?设计意图】练习的设计密切联系教学的重难点,同时习题的编排体现由易到难的层次性,选取的素材紧密联系学生的生活实际,具有一定的趣味性。

六、课堂小结,拓展延伸

1.这节课你有什么收获?明白了什么?说一说分数乘整数的计算方法?

2.谁会用含有字母的式子表示分数乘整数的计算方法?

?设计意图】通过回顾,强化对所学知识的理解。要求学生用含有字母的式子表示计算方法,很好地培养了学生的符号表达能力。

6的乘法教案篇8

【教学目标】

1.理解并掌握乘法分配律的内容和字母表达式,运用乘法分配律进行计算,知道它的一些应用。

2.经历从现实背景中抽象出乘法分配律的过程,通过计算、观察、举例、验证、概括、说理等活动,积累数学探究活动经验。

3.体会乘法分配律的现实背景,了解乘法分配律的作用、意义及价值,初步感受转化、归纳等数学思想。

【教学重点】

理解、掌握并运用乘法分配律。

【教学难点】

从现实背景中抽象概括出乘法分配律。

【教学过程】

一、课前谈话,导入新课。

不知道同学们注意过没有,我们说的话中存在着一种有趣的分配现象。比如说:“我爱爸爸和妈妈。”可以把它分成两句来说:“我爱爸爸,我也爱妈妈。”照这样“我爱吃苹果和西瓜”可以怎样说?(我爱吃苹果,我也爱吃西瓜。)当然,也可以反过来,将两句话合成一句话来表述。“我爱看漫画书,我也爱看故事书。”可以这样说“我爱看漫画书和故事书。”今天中午我吃了米饭、青菜和鱼可以怎样说?是不是挺有趣的?其实在我们的数学中,也存在着这种有趣的分配现象,想不想一起去研究?

通过前几节课的探索,我们已经发现了乘法交换律和乘法结合律,这一节课,咱们再继续探索,看看又会发现什么新的规律。(板书:探索与发现(三))

二、探索交流,发现规律。

1、初步感知。

(1)(出示长方形草坪图)课件演示。

师:我们宝鸡的人民公园最近正在改建,大家看,这是一块草坪,工人叔叔准备在草坪的四周围上栅栏。看图,你发现了哪些数学信息??

(2)师:求栅栏长多少米?就是求长方形的什么呢?请同学们算一算。(生计算,师巡视)

(3)师:谁来说说自己的算法?(根据学生回答板书算式a)

师:像这样算的同学请举手。谁来说说,先算的什么?再算的什么?

(4)师:有没有不一样的想法?(根据学生回答板书算式b)

师:这样算的同学请举手。这种算法先算的什么,再算的什么呢?

a: b:

(61+39)×2 61×2+39×2

=100×2 =122+78

=200(米) =200(块)

(5)师:这两个算式,解决了同一问题。计算的结果也相等。那么,这两个算式之间可以用什么符号连接?(根据学生回答板书“=”)

(6)师:这两个算式真有趣,明明是不同的算式,却能得到相等的结果。它们之间一定有什么内在的联系与区别。观察,看看你能发现什么?同桌之间说一说。(生讨论,师巡视)

(7)师:说说你们的想法。

(8)师根据学生发言引导学生发现:

相同点:都使用了乘法和加法 ;

参与运算的数是相同的;

意义相同(都算了长方形的2条长与2条宽之和。)

不同点:运算顺序不同

左边先算和,再算积;右边先算积,再算和

2、再次感知。

你们帮老师解决了一个实际问题,老师奖励给大家一些笑脸,(出示笑脸图,每行有五个黄色笑脸图,三个红色笑脸图,共四行。)

(图略)

知道这上面一共有多少个笑脸吗?你能用几种方法解答?

学生再次各自列式计算,并很快说出两种不同的思考方法和算式,结合学生回答教师接着上题板书如下:

(5+3)×4=5×4+3×4

3、概括定律。

我们现在已经得到了两个等式:

(61+39)×2=61×2+39×2

(5+3)×4=5×4+3×4

从上面的算式中你有没有发现什么规律?

师:(惊奇地)你们真的发现了这些算式中隐含着的规律,请与你的同桌交流一下,好吗?

师:从大家的神态和脸部表情中,老师知道你们一定觉得自己发现了什么规律。同学们,你们发现了什么,我能猜到。不过,你们所看到的也许只是一种偶然现象,是一种猜想而已。你们能再举些例子对自己的猜想进行验证吗?

生在练习本上举例验证。

师:从同学们举的大量的例子中,可以确定你们的发现是正确的。 还有不同意见吗?

师:你们发现的这个知识规律,叫做乘法分配律。什么叫乘法分配律?请同桌再交流一下。

学生积极地与同桌交流着,又踊跃地参加集体交流。

生1:把括号里的两个数加起来后乘以一个数,等于把括号里的两个数都去乘以一个数,再把乘出来的积加起来。

生2:乘法分配律是:左边把两个数加起来乘以乘数,等于括号里的一个加数乘以乘数加上括号里的另一个加数乘以乘数。

师:你们想表达的是这样的意思吗?(教师出示幻灯:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变。)

师:这叫做乘法分配律。能用字母来表示乘法分配律吗?

结合学生回答,教师板书:

(a+b)×c=a×c+b×c

师:对于乘法分配律,用字母来表示,感觉怎样——(稍等)简洁、明了。这就是数学的美。

三、应用规律,解决问题。

1、师:看来你们已经发现了规律,下面根据你们发现的规律,来做一个“找朋友”的游戏。

小黑板出示:(25+36)×4 ,谁是它的好朋友?

6×(20+30)

(a+50)×6

45×8+55×8

7×16+7×184

2、根据运算定律,在□中填上合适的数。

①(12+50)×3= □×3+□×3

②15×(40 + 23) = 15×□+15×□

③78×20+22×20=(□+□)×20

④▲×+●×=(□+□)×□

⑤66×28 + 66×32 + 66×40=(□+□+□)×66

3、选择。请用手势表示正确答案的编号。

与 25×(4×8)相等的算式是( )。

①25×4+25×8; ②25×4×25×8; ③25×4×8

全班学生中有一位选①,三位选②,其余都选③。通过辨析,学生更加清楚乘法分配律的内涵及与乘法结合律的区别。

(学生独立在作业纸上完成后,集体订正,电脑逐个显示订正后的答案。

4、选择其中一组题目来计算

甲组乙组

①100×13+2×13 ① 102 ×13

②(63+37)×39 ②63×39+37×39

③ 9×(46+54) ③ 9×46+ 9× 54

师:先观察,确定一下你做哪一组。(先选好要做的内容,并说明理由。最后总结出:利用乘法分配律可以使一些计算简便。然后学生独立做题,完成后交流答案。)

5、实际应用。

足球比赛的时候,学校为同学们准备了饮料。准备了24箱苹果汁和26箱橘子汁,每箱都是24瓶,你知道一共有多少瓶饮料吗?(学生独立解答,再集体交流。)

师:每箱饮料36元,付1500元够吗?(学生完成后,交流)

四、全课总结,布置作业。

1、通过这节课的学习,你有什么收获和感受?

2、你觉得自己的表现哪里最好?

3、老师小结:今天同学们通过自己的探索,发现了乘法分配律,真的很棒。乘法分配律是一条很重要的运算定律。应用乘法分配律既能使一些计算简便,也能帮助我们解决生活中的一些数学问题,在我们的生活和学习中应用非常广泛。同学们要在理解的基础上牢牢记住它,希望它永远成为你的好朋友,伴你生活、成长。

4、作业(略)