教师在教案中应注重评价方式,确保学生学习效果可测,通过反思教案,教师可以不断改进自己的教学策略,小文学范文网小编今天就为您带来了小学数学四年级上册数学教案7篇,相信一定会对你有所帮助。
小学数学四年级上册数学教案篇1
一、指导思想和理论依据
数学是研究现实世界的空间形式和数量关系的科学,因此数形结合思想是重要的数学思想方法之一,也是分析问题、解决问题的有力工具。著名数学家华罗庚指出:“数缺形时少直观,形少数时难入微”。这句话说明了“数”与“形”是紧密联系的。我们在研究“数”的时候,往往要借助于“形”,在探讨“形”的性质时,又往往离不开“数”。数形结合具体地说就是将抽象的数学语言与直观图形结合起来,使抽象思维与形象思维结合起来,通过“数”与“形”之间的对应和转换来解决数学问题。
二、教材分析
乘法分配律的教学是在学习乘法和加法的交换律与结合律的基础上进行的。目的是让学生对大量运算中的一类特殊的积和运算进行概括,使学生的计算在积累一定经验之后上升到一种理性认识,在小学阶段渗透恒等变换的思想,从而更好地发展数与代数的运算能力。
三、学情分析
在初步学习了三个运算定律后,当学生碰到“计算下面各题,能简算的要简算”此类题时,错误就更多了。究其原因,因为这类题不仅要求学生能明确运算顺序,正确计算,而且还要求学生有一定的观察能力,甚至要有一些直觉,能够进行合理的分析,找出其中能够进行简便运算的部分,并合理地进行简便运算。要想顺利完成这种题,学生必须要透彻理解简算的原理,完全把握简算的本质,既不能把可以简算的题轻易忽略了简算,也不能把无法简算的题错误地进行简算。经过整理归类,我发现学生简便运算主要是对运算定律混淆不清。
如:18×101=18×100×1=1800
125×48=125×(40+8)=125×40+8=5008
125×48=125×(40+8)=125×40×125×8=5000000
101×52=(100+1)×(50+2)=100×50+1×2=5002
25×64×125=25×(60+4)×125=25×60+4×125=20__
这些错误的发生,说明了学生对乘法结合律和乘法分配律这两条运算定律产生了混淆。这是由于乘法结合律与乘法分配律在表现形式上十分相近,致使一些学生造成知觉上的错误。
四、我的思考
著名数学家华罗庚指出:“数缺形时少直观,形少数时难入微”。这句话说明了“数”与“形”是紧密联系的。我们在研究“数”的时候,往往要借助于“形”,在探讨“形”的性质时,又往往离不开“数”。数形结合具体地说就是将抽象的数学语言与直观图形结合起来,使抽象思维与形象思维结合起来,通过“数”与“形”之间的对应和转换来解决数学问题。
在教学乘法运算定律:“乘法交换律、结合律和分配律”时出现的各种问题,很多老师都是从“数”的角度来帮孩子加强理解,这对于孩子是有用处的。也有很多老师提出要加强练习,这样的做法也是有用处的。“练习不等同于重复”,练习不等于简单机械的重复操练,而是要敏锐发现学生学习的节点,分析成因,找到真正的症结所在,针对学生的学习困难,设计有价值的课堂教学。“数形结合的思想”是一种数学思想方法。通过“数形结合思想”在乘法运算定律中的教学,使复杂的问题简单化、使抽象的问题形象化、使模糊的问题明朗化,孩子们对知识本质的理解更加深入了,使他们由最初的迷茫发展至现在的茅塞顿开,达到了非常好的学习效果,提高了学习的效率。
教学目标:
根据以上分析我确定了本节课的教学目标:
1.引导学生将结合律、分配律的简便计算应用于解决现实生活中的实际问题,同时注意解决问题策略的多样化。
2.借用数学模型(点子图)帮助学生区分结合律和分配律的本质特征。(结合律是拆数等分成相同的几组,所以连乘,分配律是不等分分成几个不同的块,所以乘加或者乘减。)
3.通过回顾错题的练习,让学生自觉用点子图帮助找错误原因,以提高正确率。
教学重难点:
重点:借用数学模型(电子图)帮助学生理解乘法结合律和分配律知识的本质特征,让学生能够正确区分使用这两种定律。
难点:正确认识乘法结合律和分配律的本质特征。
教学过程:
一、借助点子图帮助学生区分结合律和分配律的本质
(一)创设情境,引出点子图
1.光明学校要组织一些学生参加区运动会的入场式表演,同学们要站成这样的队形(ppt出示人站成的图形15×18),要求一共有多少人,谁会列算式?
(15×18)
2.如果用一个黑点来代表一名学生,站好的队形就成了这样的方阵(ppt出示点子图15×18)。
设计意图:创设情境,由生活中的方阵计算一共要多少名学生,转化为点子图求一共有多少个点,让学生体会数学来源于生活。
(二)展示算法多样化
1.学生四人一小组,看哪个小组能用尽量多的不同的方法来帮助巧算,并结合点子图把算式里的想法在点子图里圈一圈,一种方法用1张图,用彩笔圈点子图,圈的时候先要想好了再圈。四人一组,讨论操作。
2.汇报
(预设)15×18=15×9×2
15×18=15×6×3
15×18=15×(10+8)=15×10+15×8
15×18=15×(20-2)=15×20-15×2
15×18=5×18×3
15×18=(10+5)×18=10×18+5×18
15×18=(20-5)×18=20×18-5×18
学生分别把7种解法的点子图做个说明。
设计意图:由于本节课是在学生学习了乘法结合律和分配律之后进行的,一方面了解学生掌握知识的情况,另一方面展示算法多样化。
(三)分类,观察分析点子图及算式,找到两种定律的本质区别
1.分类
学生尝试把这些方法分分类并说一说为什么这么分?
2.找到结合律的特点:因为等分成几组,所以连乘
观察结合律的点子图分析其特点。
学生举例说明:15×18=15×2×9
15×18=15×6×3
15×18=5×18×3
3.找到分配律的特点:因为不等分,分几个不同的块,所以乘加或者乘减
观察分配律的点子图分析其特点。
学生举例说明:15×18=15×(10+8)=15×10+15×8
15×18=15×(20-2)=15×20-15×2
15×18=(20-5)×18=20×18-5×18
设计意图:通过分类,了解学生观察算式的角度,分类一共有两种情况:按方法分成结合律(点子图的特点“等分”)和分配律(点子图的特点“不等分”);按拆18和拆15分类。通过比较、引导学生观察“等分”成几组只能连乘;不等分,分几个不同的块,所以乘加或者乘减。从而找到结合律和分配律最本质的区别。
(四)概括:不同的拆分一定会带来不同的方法,要时刻想着点子图
ppt出示:
总结:看来我们在做题的时候,脑子里得想着点子图,是等分成几组,还是不等分分成几块,如果等分成几组就得连乘,不等分分成几块就得乘加或者乘减。看来不同的拆分一定会带来不同的方法,相同的方法也会有不同的做法。点子图真是帮了我们的大忙,找到了结合律和分配律最本质的区别。
设计意图:通过对比,观察拆数,让学生掌握在做相关类型题的时候看着拆数的不同,头脑中要结合点子图的特征,从而让学生明确“不同的拆分一定会带来不同的方法,相同的方法也会有不同的做法”。
二、回顾错题,利用点子图分析错误原因
回顾过去的学习出现过的错误利用点子图进行分析
(ppt:错题1)125×48=125×40×8
(ppt:错题2)如:125×48=125×(40+8)=125×40+8
设计意图:用探究到的结合律和分配律的本质区别,结合点子图说明错误原因,使学生加深对本质区别的理解。
三、拓展练习
8×12+4×36
四、课堂总结
今天这节课你印象最深的是什么?
总结:今天我们借助图来帮助我们研究数的问题,其实不光是点子图,还有其它图形也能帮助研究数的问题,希望同学们下次在碰到有关数的问题的时候能够想到我们的图形朋友。
小学数学四年级上册数学教案篇2
教学目标:
1.使学生知道常用的土地面积单位-----公顷、平方千米(平方公里),通过实际测量和观察,知道1公顷有多大。
2.使学生掌握土地面积单位间的进率和简单换算。
3.培养学生的参与意识,感受数学知识与生活实际有着密切的联系。
教学重点:
知道1公顷有多大,掌握土地面积单位间的进率。
教学难点:
土地单位间的换算。
教学过程:
一、复习。
1.到目前为止,你都认识了哪些常用的面积单位?它们之间的进率是多少?
2.像这些平方米、平方分米、平方厘米等都是公制面积单位,是计量面积时使用的。在计算土地面积时要使用土地面积单位 (板书课题:土地面积单位)常用的单位有平方米、公顷和平方千米。【演示课件土地面积单位】
二、新授。
1.认识1公顷。
(1)将学生带到操场,画一个边长是10米的正方形。引导学生观察、计算正方形的面积。
(2)教师指出:100个这样的正方形土地的大小,叫做1公顷。为学生介绍学校操场、教学楼的占地面积。
(3)把学生带回教室,思考讨论:公顷和平方米之间的进率是多少?(1公顷=10000平方米)
2.教学例题。
(1)出示例题,学生试算。
一个长方形果园,长250米,宽120米。这个果园有多少公顷?
(2)汇报展示,全班订正。【继续演示课件土地面积单位】
250120=30000(平方米)
30000平方米=3公顷
答:这个果园有3公顷。
(3)测量土地时,一般用米作长度单位来测量。算出面积是多少平方米以后,再换算成公顷。
3.认识平方千米。
(1)我们都知道我们伟大的'祖国有960万平方公里的土地。平方公里也就是平方千米,是比公顷还要大的土地面积单位。
(2)大家想一下,边长是1000米的正方形面积是多少?1000000平方米也就是1平方千米。想象一下1平方千米有多大?
(3)谁能计算一下平方千米和公顷之间的进率是多少?
三、巩固练习。
1. 2公顷=( )平方米
50000平方米=( )公顷
2平方千米=( )公顷
4000公顷=( )平方千米
2.(1)北京的天安门广场是世界上最大的广场,面积约40公顷,约合( )平方米。
(2)北京的故宫是世界上最大的宫殿,占地面积是720000平方米,合( )公顷。
3.一块边长是400米的正方形麦地,有多少公顷?
四、全课小结。
通过这节课的学习你有了些什么新的收获?
五、课后作业。
1.(1)北京的天安门广场是世界上最大的广场,面积约40公顷,约合()平方米。
(2)北京的故宫是世界上最大的宫殿,占地面积是720000平方米,合()公顷。
2.一个飞机场新建一条跑道,长2500米,宽80米。占地多少公顷?
3.一块正方形的果园,周长是2400米。这个果园有多少公顷?
4.农民给水稻施化肥。每公顷施225千克。在一片长200米,宽150米的长方形稻田里,应施化肥多少千克?
小学数学四年级上册数学教案篇3
教学内容:
人教版义务教育课标实验教材(四上)112的例1
教学目标:
1、通过生活中的简单事例,使学生初步体会到优化思想在解决问题中的应用。
2、使学生认识到解决问题中的策略的多样性,初步形成寻找解决问题最优化方案的意识。
3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决问题的实际能力。
4、使学生能积极地参与数学学习活动,体会到学习数学的乐趣。
教学重点:
体会优化思想。
教学难点:
探究解决问题的最优方案。
教具准备:
多媒体课件、探究用表格
学具准备:
三张圆纸片。
教学过程:
一、创设情境,生成问题
1、同学们家里有厨房吗?你们进过厨房吗?进去做什么?厨房里有什么数学问题吗?
2、我们来看看王华家厨房里的数学问题。(课件出示例1图)中午放学回家,王华发现妈妈正在厨房准备烙饼。(板书课题:烙饼问题)
师:“从图上你能得到哪些信息?”学生观察、理解图中的内容。
(这一环节是通过创设出生活化的情境,激发学生的学习兴趣。利用烙饼这一事例,调动学生已有的生活经验,使学生处于主动思考解决问题的最佳状态。)
教师提问:“妈妈烙一张饼最少需要几分钟?” “如果妈妈要烙2张饼最少需要几分钟,怎样烙?”
小结:我们烙两张饼时,可以先同时烙饼的正面,用了3分钟;再同时烙饼的反面,用了3分钟这样烙两张饼就需要6分钟。
师:“爸爸、妈妈和小丽各吃一张饼,一共要烙几张饼呢?” “要烙3张饼,锅里每次最多只能烙2张饼,那3张饼怎样烙时间最短呢?”
二、探索交流,解决问题
1、学生操作,探究烙3张饼的方法。
让学生用发的圆片烙一烙,同桌说说用了几分钟,是怎样烙的。(圆片的正、反面上分别写着正、反两字来代表饼的正、反面。)教师参与到小组活动中。
(相信学生,放手让学生探索解决问题的方法,才能使学生成为学习的主人。)
2、学生演示烙饼法。
师:谁愿意把你烙饼的方法介绍给大家。(学生上黑板动手烙,边烙边说)
让大家来比较:“这些烙法,哪一种能让大家尽快地吃上饼?”
得出结论:9分钟是烙3张饼所用的时间最短的,我们就把(烙3张饼所需时间最短的)这种方法,叫快速烙饼法。(教师板书快速烙饼法)
教师用课件演示烙三张饼的方法并小结:先把饼1、饼2同时放进锅里,先烙饼1、饼2的正面,3分钟后,取出饼1,放入饼3,再同时烙饼2的反面和饼3的正面,3分钟后,饼2烙好了,取出饼2,再放入饼1,再同时烙饼1和饼3的反面,又过了3分钟,饼1和饼3烙好了,这样烙3张饼就用了9分钟。
师:老师是用什么方法烙的?(也是用快速烙饼法)
师:使用这种方法时,你发现了什么?
(1、使用快速烙饼法,锅里面必须同时放2张饼。2、用的时间短。)
让学生用烙3张饼的快速烙饼法再烙一次,边烙边说给你的同桌听。
(烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。)
3、拓展延伸:
师:(出示表格,边说边点击表格)刚才烙2张饼时可以2张2张烙,所需时间是6分钟,烙3张饼时可以用烙3张饼的最佳方法,所需时间是9分钟。想一想,如果烙4张饼,怎样烙时间最短?
学生发言。班内交流,并比较哪个小组的方法最好。
教师小结后提问:“如果要是烙5张饼,怎样才能让大家尽快地吃上饼?需几分钟”
小组活动,通过小组交流,使学生找到最佳方法。
教师小结后提问:“如果要是烙6张饼,怎样才能让大家尽快地吃上饼?需几分钟”
学生发言。班内交流,并比较哪个小组的方法最好。
教师小结后提问“如果要是烙7张饼、8张饼10张饼最少需几分钟?”
(通过以上活动,可以使学生找到最优方法,体会优化思想在解决实际问题中的应用。)
在这样过程逐步形成课件表格.饼数
2 3 4
同时烙两张饼 快速烙饼法 两张两张地烙
先烙两张,后三张用快速5 烙饼法
两张两张地烙
18 15
烙 饼 方 法
最少所需的时间(分)
6 9 12
7 8 9 10
21 24 27 30
4、探究规律。
让学生仔细观察表格、小组讨论交流,说一说自己的发现。
(根据情况决定是否给学生启示:
1、仔细观察烙饼的张数和烙饼所需要的时间,你发现了什么?
2、仔细观察烙饼的张数不同烙饼的方法有什么不同?)
学生在充分交流探讨的基础上,得出结论:
1、如果要烙的饼的张数是双数,2张2张的烙就可以了,如果要烙的饼的张数是单数,可以先2张2张的烙,最后3张用快速烙饼法最节省时间。
得出结论:每多烙一张饼,时间就增加3分钟,用饼数乘烙一面饼所用的时间,就是所用的最短时间。(饼数×3=所需最少的时间。)
教师:“谁能很快地说出烙11张饼用多长时间?烙15张饼呢?”
(通过拓展性的设问,既对前面所学知识进行了巩固,也为学生思维能力的培养提供了时间和空间。)
三、实践应用,内化提高
课件出示114页做一做第1题。
教师:“现在美味餐厅的厨师也遇到了难题,餐厅里来了三位客人,每人点了两个菜,而餐厅里只有两位厨师,假设两个厨师做每个菜的时间都相等,怎样安排炒菜的顺序才比较合理呢?”
1、引领理解题意。
2、全班交流
四、回顾整理,反思提升
1、这节课你学到了什么?
2、师:同学们回家后可以找一找生活中还有哪些问题可以用今天所学的知识来解决。
小学数学四年级上册数学教案篇4
教学目的
1、体会引入量角器的必要性,认识量角器。
2、会用量角器测量各种角的度数。
教学重点
会用量角器量角。
教学难点
正确使用量角器度量角的度数。
教学过程
一、复习准备
1、你能迅速判断下面的哪个角大吗?(投影出示)
2、用硬纸片剪出一个小角分别去度量∠1和∠2的大小。
3、与同学交流度量的结果。
第①组∠2比∠1大,能迅速看出。第②组学生的答案会不一致,其实∠1=∠2,又因为摆的方向不同,边画的长短不同,学生是不能迅速看出的,由此导入新课。
二、教学新课
1、认识量角器。
(1)刚才我们看出第①组中∠2>∠1,究竟大多少呢?还有第②组是∠1大还是∠2大?这些问题的解决都需要我们对角进行度量。(揭示课题:角的度量)
(2)度量角的工具是量角器。(老师投影实物,有机玻璃量角器)计量角的大小的单位是“度”,用符号“1°”表示。人们将圆平均分成360份,把其中的1份所对的角叫做1度,通常用
“1°”作为量角器的单位。
(3)学生观察量角器,认识量角器。
①量角器是什么形状?(半圆形的)
②找到半圆的圆心,也就是0刻度线正中间的一点,(老师在投影仪上指出),这一点就是量角器的中心。
③以半圆的圆心为中心,把半圆平均分成180等份,每一份所对的角就是1度的角,记作1°,也就是半圆边上的一小格。(在投影仪上指出)
④从0刻度线开始,按逆时针方向往上数,标有10°、20°、30°……180°,这些刻度标在内圈,就是量角器的内刻度。内刻度的零度所在的刻度线就是内刻度的零刻度线,就是在量角器右边的零刻度线。(在投影仪上指出)
⑤在量角器左边的零刻度线就是外刻度的零刻度线,顺时针方向在外圈的刻度就是外刻度。(顺时针方向指给大家看)
2、教学使用量角器。
(1)怎样用量角器量角的大小呢?打开教材第26页自学。再回答老师的问题:
①用量角器量角的时候要注意两个“重合”,是哪两个重合?(量角器的中心和角的顶点重合,零刻度线和角的一条边重合)
②怎样重合?学生在学具卡上练习量∠1,老师在投影仪上操作,同桌互相检查,是否遵循了两个重合。
③怎样读数?角的另一条边上有两个刻度读哪个刻度呢?(学生讨论)
(2)如果用了内刻度的零度线,就读内刻度的度数;如果是用的外刻度的零度线就读外刻度的度数。
(3)看你们量的∠1,用的哪个零刻度线,读出度数。
(4)回顾一下怎样量一个角的度数。
(5)自己动手量教材第26页两个角a、b的度数,比较它们的大小,老师巡视及时纠正学生的操作错误。提示:另一条边指不到刻度上怎么读数呢?角的边可不可以延长?
(6)学生交流量角的方法
从刚才的度量可知两个角的度数。角的大小与角的两边画的长度有没有关系?与什么有关?(角的大小与角的两边画出的长短没有关系,角的大小要看两条边叉开的大小,叉开的越大,角越大。)
三、巩固练习
1、完成“练一练”第1题。
学生自己量,老师巡视辅导。
2、完成“练一练”第2题。
在量角前,先让学生估一估所量的角是什么角,大约是多少度,然后量出各角的度数,并记下来。
3、完成“练一练”第3题。
量出三角板各角的度数,并记住各角的度数。学生自己量,老师巡视辅导。
4、组织学生进行“猜角度”的小游戏。
规则根据教科书第27页,通过游戏提高学生估计角度的能力,可同桌两人进行。
四、课堂小结
怎样度量角的大小?(注意两个重合,怎样读数)
五、布置作业
小学数学四年级上册数学教案篇5
教学内容:
26-27页第4—7题
教学目标:
1.通过动手做练习,进一步熟练一位数除多位数的笔算。
2.边练习边观察,从不同角度分析思考,体验到探索的乐趣,创新的乐趣。
教学重点、难点:
通过一位数整除三位数的基本练习课,巩固多位数除以一位数的笔算方法,能正确、熟练地进行计算。
教学过程:
一、 计算找联系
1. 独立计算课本第27第5题。
教师巡视看学生计算的方法。(有的同学做了27x5=135,直接就得出:135÷5=27)
请做得快的同学介绍一下自己的方法。这个方法好吗?我们就用乘除之间的关系来计算。
2.估一估,算一算课本第27页的第6题。
二、多角度思考,填()里的数
出示 2()x4=104,你能在()里填正确的数吗?
请每组派代表说说你们的思考方法。(引导学生多角度思考)
三、 熟练笔算方法
1. 判断课本第26页第3题商的余数。
要指导自己判断是否正确,可用什么方法验证?
下面我们来计算一下,看看它们商为数与你判断的是否一致。
再仔细观察以下,商的为数与什么有关?它们之间有什么关系?
学生汇报,教师板书:
除数一位数
被除数首位够除:
商的位数=被除数的位数
被除数首位不够除:
商的位数=被除数的为数—
2. 27页第7题
小学数学四年级上册数学教案篇6
一、教学内容
教科书第62页例3、例4及相关内容。
二、教学目标
1、在操作试验活动中经历探索发现“三角形边的关系”的过程,知道三角形边的关系。
2、借助剪一剪、拼一拼、移一移等活动,积累数学活动经验,培养学生自主探索、动手操作、合作交流的能力。
3、渗透建模思想,体验数据分析、数形结合方法在探究过程中的作用。
三、教学重点
理解三角形任意两边的和大于第三边。
四、教学难点
理解两条线段的和等于第三条线段时不能围成三角形,理解“任意”二字的含义。
五、教具准备
“几何画板”制作的教学课件,三角形的每条边可以根据学生生成的数据输入显现,展示围的过程。
六、学具准备
透明彩色喷墨胶片打印线段。
七、教学过程
环节预设教师活动学生活动设计意图
一、再现三角形模型——强化对三角形的认识1、谈话导入,复习三角形概念。
师:我们已经认识了三角形,谁来说说什么是三角形?
2、操作试验,感受三条线段怎样围成三角形,懂得围成三角形的关键是任意两条线段的端点两两相接。
(实物投影:三张印有线段的胶片,胶片的边沿相连。)
师:看屏幕,现在这样围成三角形了吗?
教师:谁来围一围?
(请一名学生在实物投影上操作,其他同学观察,评价。)
教师:刚才的没围成三角形,现在就围成了,围成三角形的关键是什么?
学生回答
学生观察
学生操作,评价
学生讨论并回答
先让学生说说什么是三角形,调出学生的原有认知,通过实物投影上三条线段围的变化,一方面帮助学生重现三角形的模型,强化对“每两条线段的端点相连”的认识,潜移默化地指导了围的方法。为后边的学习打下基础。
二、拆解三角形模型——制造冲突,引发思考1、拆解
师:如果从三条线段中拿走一条,剩下的可能是哪两条?
(板书:11、6和11、11)
2、讨论
师:用这两条线段能直接围成三角形吗?能想办法变成三条线段吗?
师:变成三条线段了,就能围成三角形吗?
(板书:能?不能)
学生动手,观察并总结回答在学生生活经验和已有认识中,想象得到的都是能围成三角形的三条线段,头脑中也有大量这样的生活原型和抽象的三角形模型。教师通过“从三条线段中拿走一条→两条线段围不成三角形→想办法变成三条→三条线段就能围成三角形吗”四个小步骤的巧妙设计,打破了学生头脑中存有的三角形模型,引发学生的思考:三条线段能不能围成三角形呢?给学生提供了一个质疑自己和他人已有知识经验的机会,让他们在审视、思考、疑惑中进入到下一个环节的研讨。
三、重组三角形模型——探究三角形边的关系
1、操作试验,明确三条线段能否围成三角形
(1)明确要求。
师:实际情况是不是你们想的那样呢?请你动手试试。
要求在动手前,小组内先一起说说打算剪哪一条,怎么剪。组内4个人每人剪的尽量不一样,剪完围围看,然后填在记录单上。
记录单:两条线段11cm和6cm(或11cm和11cm)
剪后的三条线段是()cm、()cm和()cm
围成三角形了吗?(√或×)
(2)小组合作试验。
教师监控:收集试验数据
能围成不能围成
3、8、62、9、6
4、7、61、5、11
5、6、62、4、11
…………
(3)展示交流试验情况,提取数据。
师:谁愿意把你试验的情况给大家看看?(学生说教师板书。)
追问:谁和他的不同?
还有补充吗?
谁用的是11和11,说说你们试验的结果?
师:这两条线段在哪儿相连?
师:你们觉得他说的有道理吗?
师:到底连没连上,最后边的同学看得清楚吗?看来这儿用学具不容易看清楚,咱们用课件清楚地看看。
师:有没有同学认为这个能围成?到底能不能围成,说说理由。我们通过课件演示来看一下。
(播放两边之和等于第三边时围的课件。)
(4)小结过渡。
师:通过亲自试验,大家知道三条线段有时能围成三角形,有时不能围成三角形。
学生动手操作
学生展示结果
情况一:
全是能(或全是不能)的情形。
情况二:
有的能有的不能的情形。
学生将一条线段剪成两条,从理论上分析能够得到无数种不同的剪法,但围三角形的结果只会出现两种:能围成和不能围成。教师根据可能出现的试验结果进行设计,引导学生在生生交流中提取典型数据。通过实物投影变焦放大的功能,有助于学生清晰地看到两条线段的端点相连情况。几何画板课件随学生生成输入数据和动态演示过程,弥补了学具操作的不足,有助于学生达成统一认识。这几个环节的设计,不是就内容说内容,而是让学生在亲自动手试验基础上,补充完善个人和小组的认识,达成共识。学生在剪、围中思考,初步感受能不能围成三角形,不是在比较每一条线段,而是需要看两条线段与第三条线段的关系,为后续教学做了铺垫。
三、重组三角形模型——探究三角形边的关系
2、数形结合,探究三角形边的关系
(1)提出问题。
师:试验前我们的问题已经解决了,如果继续研究,你想研究什么?
师:你觉得三条线段能否围成三角形与什么有关系?
(2)研讨三条线段不能围成三角形的情况。
师:三条线段在什么情况下不能围成三角形呢?小组同学研究研究。
师:哪个小组来说说你们的想法?(课件:输人数据生成三角形演示围的情况。)
(3)研讨三条线段能围成三角形的情况。
师:同学们知道了两条短的线段的和小于或等于第三条线段的时候一定不能围成三角形。
那三条线段在什么情况下就能围成三角形呢?我们来看这些能围成的情况,一起来分析分析。
师:哪个小组来说说你们的想法?
生:什么样的三条线段能围成三角形,什么样的不能围成三角形。
小组讨论
学生说想法
课件重现了数据对应的图形,学生借助黑板上的数据、屏幕上的图形和数据进行分析,发现不能围成三角形的三条线段之间的关系。
小学数学四年级上册数学教案篇7
三位数除以两位数的估算
?教学内容】
义务教育课程标准实验教科书(西师版)四年级上册第101页例2,课堂活动以及练习十九第5~8题。
?教学目标】
1.掌握三位数除以两位数的估算方法,并能熟练进行相关估算。
2.在尝试练习中掌握两位数的估算方法。在解决实际问题中掌握具体的数量关系。
3.在解决问题中学会用数学眼光看待生活现象,并在探索算法的过程中获得成功的体验,提高对数学的认识。
?教具学具准备】
主题图片、视频展示台等。
?教学过程】
一、创设情景、回顾知识
1.口算:80÷490÷30800÷20 120÷4540÷903200÷802.
2.求下面各数的近似数。23866721(省略千位、百位后面的尾数)
3.估算:79÷459×42 183÷6310×194.
提问:除数是一位数的除法该怎样估算?
教师:今天我们继续探讨估算除法。
(板书:估算除法)
[点评:充分利用学生已有的估算经验,做好知识的孕伏工作;同时为分散本节课的知识难点做好铺垫工作。]
二、独立尝试、合作研究
1.出示例2主题图:从重庆出发,普通客船每时行20km,大约()时可以行207km。口头列式并解答,说一说你是怎样估算的?
要点:将207km看作200km,200÷20=10(时)
2.出示例2第一组信息。提出问题,连贯的说一说条件和问题。
从重庆到三峡大坝全长624km,如果乘坐普通客船每时行23km,去三峡大坝大约需要多少时?
(1)列式并说一说为什么用除法?要点:624里有几个23就要行几时(为小结数量关系“路程÷速度=时间”作好铺垫)。
(2)说一说你是怎样估算的?要点:可以把624看成600,把23看成20,再口算。也可以把624看成620,把23看成20,再口算。根据学生的回答进行梳理并板书。624÷23≈30(时) 624÷23≈31(时) 600÷20=30620÷20=31
3.独立尝试练习,例2第二组信息。
从三峡大坝到重庆全长624km,如果乘坐高速快船每时行52km,回重庆大约需要多少时?
(1)列式并估算。
(2)说一说你是怎样估算的?若有不会的同学,可以请教同桌、同组同学或老师。
(3)集体交流——分两个方面。
第一,为什么用除法?(624里有几个52就要行几时)
第二,你是怎样估算的?(把624看成600,把52看成50,再口算) 624÷52≈12(时) 600÷50=12
[点评:让学生在猜测中学会迁移能力,并在与同学的交流中达成对猜测能力的'认同感,在不断地观察和交流中,从具体逐步过渡到抽象。学生在经历知识形成的过程中逐步上升为估算知识的理性思考。]
三、小结提升、完成板书
小结:(1)除数是两位数的除法怎样估算?被除数看作整百数(或几百几十数),除数看作整十数,再相除。
(2)从解决上面的问题中你发现了怎样的数量关系?路程÷速度=时间。
四、练习巩固、熟练估算
1.第102页课堂活动。
(1)180÷90=2(时)为什么这样列式?路程÷速度=时间。
(2)581÷7=83(千米)又能发现怎样的数量关系?路程÷时间=速度。
(3)762÷75≈10(时)怎样估算的?
2.教科书第103页5~8题