设计合理的教案能够有效降低课堂管理的难度,教案不仅是教师的指南,也是学生学习的桥梁和纽带,以下是小文学范文网小编精心为您推荐的含0的乘法教案模板6篇,供大家参考。
含0的乘法教案篇1
教学目标:
1.让学生自主探索小数乘法的计算方法,能正确进行笔算,并能对其中的算理做出合理的解释。
2.使学生会用“四舍五入”法截取积是小数的近似值。
3.使学生理解整数乘法运算定律对于小数同样适用,并会运用这些定律进行关于小数乘法的简便运算,进一步发展学生的数感。
4.使学生体会小数乘法是解决生产、生活中实际问题的重要工具。
教学措施:
1.重点引导学生用转化的方法学习小数乘法。
2.指导学生对小数乘法的算理做出合理的解释,提高简单的推理能力。
3.注意引导学生探索因数与积之间的大小关系的规律。
课时安排:6课时。
第一课时小数乘以整数
教学目标:
1、使学生理解小数乘以整数的计算方法及算理。
2、培养学生的迁移类推能力。
3、引导学生探索知识间的联系,渗透转化思想。
教学重点:小数乘以整数的算理及计算方法。
教学难点:确定小数乘以整数的积的小数点位置的方法。
教学过程:
一、复习
①下面各数去掉小数点有什么变化?
0.343.50.20xx.02
②把353缩小到时它的1/10是多少?缩小到它的1/100呢?1/1000呢?
二、引入尝试:
大家喜欢放风筝吗?今天我就带领大家一块去买风筝。
1、小数乘以整数的意义及算理。
出示例1的图片,引导学生理解题意,从图中你了解到了哪些数学信息?
(1)例1:燕子风筝每个3.5元,买3个风筝多少元?(让学生独立试着算一算)
(2)汇报结果:谁来汇报你的结果?你是怎样想的?(板书学生的汇报。)
用加法计算:3.5+3.5+3.5=10.5元
3.5元=3元5角
3元×3=9元
5角×3=15角
9元+15角=10.5元
用乘法计算:3.5×3=10.5元
3.5元=35角35×3=105105角=10元5角=10.5元
理解3种方法,重点研究第三种算法及算理。
(3)理解意义。为什么用3.5×3计算?3.5×3表示什么?(3个3.5或3.5的3倍.)
(4)初步理解算理。怎样算的?
把3.5元看作35角
3.5元扩大10倍35
×3×3
10.5元缩小到它的1/10105
105角就等于10.5元
(5)买5个4.8元的风筝要多少元呢?会用这种方法算吗?p2做一做
2、小数乘以整数的计算方法。
象这样的3.5元的几倍同学们会算了,那不代表钱数的0.72×5你们会算吗?能不能将它转化为已学过的知识来解答呢?(生试算,指名板演。)
(1)生算完后,小组讨论计算过程,然后板书,并指名说是如何算的.
(2)强调依照整数乘法用竖式计算。
(3)示范:0.72扩大100倍72
×5×5
3.60缩小到它的1/100360
引导性提问:
0.72变成72发生了怎样的变化?
72×5算完了,再该怎么办?
为什么要缩小到它的1/100?
(4)回顾对于0.72×5,刚才是怎样进行计算的?
使学生得出:先把被乘数0.72扩大100倍变成72,被乘数0.72扩大了100倍,积也随着扩大了100倍,要求原来的积,就把乘出来的积360再缩小到它的1/100。(提示:根据小数的基本性质,将小数末尾的0可以去掉)
注意:如果积的末尾有0,要先点上积的小数点,再把小数末尾的“0”去掉。
(5)小结小数乘整数计算方法
l计算
7×425×7
0.7×42.5×7
观察这2组题,想想与整数乘整数有什么不同?
怎样计算小数乘以整数?
①先把小数扩大成整数;
②按整数乘法的法则算出积;
③再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。
三、运用
1、填空。
4.5()0.74()
×3×3×2×2
()135()148
2、判断
13.5
×2
2.70
3、p2做一做
三、体验:(1)今天我们学习了什么?(板书课题)
(2)小数乘以整数的计算方法是什么?
四、作业:p7练习一第1、2、3题。
第二课时小数乘小数
1、掌握小数乘法的计算法则,使学生掌握在确定积的'小数位时,位数不够的,要在前面用0补足。
2、比较正确地计算小数乘法,提高计算能力。
3、培养学生的迁移类推能力和概括能力,以及运用所学知识解决新问题的能力。
教学重点:小数乘法的计算法则。
教学难点:小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足。
教学过程:
一、引入尝试
1、出示例3图:同学们最近我们校园宣传栏的玻璃碎了,你能帮忙算算需要多大的一块玻璃吗?怎么列式?(板书:0.8×1.2)
2、尝试计算
观察算式和前面所学的算式有什么不同?
这就是我们要学的“小数乘小数”,两个因数都是小数,怎样计算呢?和同桌讨论一下,然后自己尝试练习,指名板演。
3、1.2×0.8,刚才是怎样进行计算的?
引导学生得出(先把被乘数1.2扩大10倍变成12,积就扩大10倍;再把乘数0.8扩大10倍变成8,积就又扩大10倍,这时的积就扩大了10×10=100倍。要求原来的积,就把乘出来的积96再缩小100倍。)
4、观察一下,因数与积的小数位数有什么关系?(因数的位数和等于积的小数位数。)想一想:6.05×0.82的积中有几位小数?6.052×0.82呢?
5、小结小数乘法的计算方法。
二、教学例4
请做下面一组练习
(1)练习(先口答下列各式积的小数位数,再计算)p4做一做
(2)引导学生观察思考。
①你是怎样算的?(先整数乘法法则算出积,再给积点上小数点。)
②怎样点小数点?(因数中一共有几位小数,就从积的最右边起,数出几位,点上小数点。)③计算0.56×0.04时,你们发现了什么?那当乘得的积的小数位数不够时,怎样点小数点?(要在前面用0补足,再点小数点。)
通过以上的学习,谁能用自己的话说说小数乘法的计算法则是怎样的?
(3)根据学生的回答,逐步抽象概括出p.5页上的计算法则,并让学生打开课本齐读教材上的法则。(勾画做记号)
(4)练习:
①判断,把不对的改正过来。
0.0240.013
×0.14×0.026
96782426
0.3360.000338
②根据1056×27=28512,写出下面各题的积。
105.6×2.7=10.56×0.27=0.1056×27=1.056×0.27=
三、应用
1、在下面各式的积中点上小数点。
0.586.252.04
×4.2×0.18×28
11650001632232625408
2436112505712
2、p5做一做
3、p8页5题:先让学生说求各种商品的价钱需要知道什么?再让学生口答每种商品的重量,然后分组独立列式计算。
四、体验:回忆这节课学习了什么知识?
五、作业:p8第7、9题,p9第13题
第三课时小数乘小数
教学目标:
1、使学生进一步掌握小数乘法的计算法则,并能正确计算。
2、使学生初步理解和掌握:当乘数比l小时,积比被乘数小;当乘数比1大时,积比被乘数大。
3、理解倍数可以是整数、也可以是小数,学会解答倍数是小数的实际问题。
4、养成认真计算,及时检验的良好学习习惯。
教学重点:运用小数乘法的计算法则;正确计算小数乘法。
教学难点:正确点积的小数点;初步理解和掌握:当乘数比l小时,积比被乘数小;当乘数比1大时,积比被乘数大。
教学过程:
一、复习准备:
1、口算:p.5页10题。
0.9×67×0.081.87×00.24×21.4×0.3
老师抽卡片,学生写结果,集体订正。
2、不计算,说出下面的积有几位小数。(p9第10题)
3、思考并回答。
(1)做小数乘法时,怎样确定积的小数位数?
(2)如果积的小数位数不够,你知道该怎么办吗?如:0.02×0.4。
4、揭示课题:这节课我们继续学习小数乘法。(板书课题:较复杂的小数乘法)。
二、新授:
1、教学例5:非洲野狗的最高速度是56千米/小时,鸵鸟的最高速度是非洲野狗的1.3倍,鸵鸟的最高速度是多少千米/小时?
(1)想一想这只非洲够能追上这只鸵鸟吗?为什么?(鸵鸟的最高速度是非洲狗的1.3倍,表示鸵鸟的速度除了有一个非洲狗那么多,还要多,所以非洲狗追不上鸵鸟。)
(2)是这样的吗?我们一起来算一算?
①怎样列式?
②为什么这样列式?(求56的1.3倍是多少,所以用乘法.)
使学生明确:现在倍数也可以是比1大的小数。
(3)生独立完成,指名板演,集体订正。
(4)算得对吗?用什么方法可以判断他做正确没有?所以每个小朋友要养成认真做题,仔细检查的良好习惯.
(5)通过刚才同学们的计算、验算,鸵鸟的速度是72.8千米/小时,比非洲狗的速度怎样?能追上鸵鸟吗?说明刚才我们的想法怎样?现在我们再来看一组题。
2、看乘数,比较积和被乘数的大小。
①(出示练习一第10题中积和被乘数的大小)先计算。
②引导学生观察:这两道例题的乘数分别与l比较,你发现什么?
③乘数比1大或者比1小时积的大小与被乘数有什么关系?为什么?(因为1.20.4的乘数是0.4比1小,求的积还不足一个1.2,所以积比被乘数小;而2.4×3的乘数是3比1大,求的积是
2.4的3倍(或3个2.4那么多),所以积比被乘数大。
④你能得出结论吗?(当乘数比1小时,积比被乘数小;当乘数比1大时,积比被乘数大。我们可以根据它们的这种关系初步判断小数乘法的正误。)
⑤专项练习:练习一第12题
先让学生独立判断。集体订正时,让学生讲明道理,明白每一小题错在什么地方。
三、运用
1、做一做:3.2×2.5=0.82.6×1.08=2.708
先判断,把不对的改正过来。
2、p9页第13题
四、体验:今天,你有什么收获?
五、作业:p8页8题,p9页11、14题
第四课时积的近似值
教学内容:p10例6、做一做,p13练习二第1—3题。
教学目的:
1、使学生会根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。
2、培养学生根据具体情况解决实际问题的能力。
教学重点:用“四舍五人法”截取积是小数的近似值的一般方法。
教学难点:根据题目要求与实际需要,用“四舍五人法”截取积是小数的近似值。
教学过程:
一、激发:
1、口算。
1.2×0.30.7×0.50.21×0.81.8×0.5
1-0.821.3+0.741.25×80.25×0.4
0.4×0.40.89×10.11×0.680×0.05
2、用“四舍五人法”求出每个小数的近似数。(投影出示)
保留整数保留一位小数保留两位小数
2.095
4.307
1.8642
思考并回答:(根据学生的回答填空)
(1)怎样用“四舍五人法”将这些小数保留整数、一位小数或两位小数,取它们的近似值?
(2)按要求,它们的近似值各应是多少?
3、揭题谈话:在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可以根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。(板书课题:积的近似值)
二、尝试:
谈话引出例题:
生列式,板书:0.049×45
生独立计算出结果,指名板演并集体订正,说一说是怎样算的。
引导学生观察、思考:
(1)积的小数位数这么多!可以根据需要保留一定的小数位数。学生独立探究,指名说说取近似值的过程和理由。
(2)保留一位小数,看哪一位?根据什么保留?
含0的乘法教案篇2
教学目标:
知识与技能
1.理解分数乘整数的意义。
2.通过主动参与教学过程,理解分数乘整数的计算法则的算理,能正确计算。
过程与方法
使学生经历解决问题的过程,体验演绎推理、归纳总结的学习方法。
情感态度与价值观
1.感受数学与实际生活之间的联系,激发学习兴趣。
2.培养学生动手动脑的学习习惯,体会数学知识之间内在联系的逻辑之美。
教学重点:
理解分数乘整数的意义,探究计算法则。
教学难点:
正确计算及约分方法。
教学过程:
一、以旧引新,唤醒认知
(一)列式计算,说说你是怎样想的? 5个12相加是多少?10个23的和是多少? (概括:整数乘法的意义:求几个相同加数的和的简便运算)
(二)口答
(三)感受分数乘整数的意义
21个相加太麻烦了,有没有简单的表示方法?(学生会想到用乘法表示成 ×21)然后让学生说一说 ×21表示的含义。 揭题:怎样计算 ×21呢?今天我们就来学习分数乘法——分数乘整数。
二、出示问题,探索新知
1、自主学习红点1。
(1)出示窗1:小鸟风筝的尾巴是用5根布条做成的,小鱼风筝的尾巴是用6根布条做成的,每根布条长都是 米。学生提出用乘法计算的数学问题。 出示红点1问题:做小鸟风筝的尾巴一共需要多少米的布条?指名口头列式。
(2)自学提示: ×5表示什么意义?两个小朋友分别是怎样计算的?学生自学课本47页。
(3)交流、质疑。
(4)比较这两种方法的联系和区别。 计算5个 相加是多少,一种方法是加法,另一种方法是乘法。 但结果是相同的。你喜欢哪种方法? 教师指出,用乘法计算比较简便,其中连加的步骤在计算时可以省略。 板书简便的写法: ×5= = (米)
2、自主学习红点2。
(1)出示问题:做小鱼风筝的尾巴,一共需要多少米的布条? 学生尝试独立解决。指名板演。集体评议。
(2)比较计算过程,分类梳理:a先计算再约分;b先约分再计算。讨论:哪种算法更简便? 6× = = =3(米) 比较两种先约分再计算的方法: ×6= =3(米) ×6= ×6=3(米) (3)小试牛刀(突破难点):用自己喜欢的方法计算。 6× = ×13= 评议谈体会。强调:分数乘整数,通常先约分再计算比较简便。
3、归纳概括: 一个分数乘整数表示什么?(求几个相同加数的和。) 分数乘整数怎样计算?(用分子和整数相乘,分母不变 ) 应注意什么?(能约分的要先约分)
三、分层练习,强化认知 .巩固分数乘整数的意义
1、自主练习第1、2题:看图写算式。集体订正,说说乘法算式的意义和计算过程。
2、计算擂台。自主练习第3题,巩固分数乘整数的算理和算法。
3、明辨是非。
4、结合实际,解决问题。
(1)一个正方体的礼品盒,底面积是 1/9平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?
(2)美术馆要进行美术展览,有5张画是边长7/10 米的正方形的,如果为这几幅画配上镜框,需要木条多少米?
四、总结
本节课学习了那些内容?通过学习你有那些收获? 分数与整数相乘,要用分数的分子与整数相乘,分母不变。计算时能约分的可以先约分再计算出结果。
含0的乘法教案篇3
教学内容:义务教育课程标准教科书二年级(上册)第68~69页。
教学目标:
1.在动手操作和合作探索中,让学生经历8的乘法口诀的编制过程,培养归纳、总结能力。
2.在应用过程中,寻找8的乘法口诀的规律,能熟练用8的乘法口诀进行计算,并用一句口诀计算两道乘法算式。
3.在合作中获得成功体验,培养良好的合作态度。
教学准备:挂图、小正方体、卡片
教学过程:
一、情境引入
(出示画面:小朋友搭积木的情景。)看,小朋友搭的各种形状的积木,多漂亮!这个小朋友搭了个长方体,每层搭7块,2层一共几块?4层呢?6层呢?你是怎么算出来的?谁能把7的乘法口诀背给大家听?
今天,咱们一起学习8的乘法口诀。(板书课题)
[评析:小朋友搭积木的情景,既复习了7的乘法口诀,又调动了学生的积极性,激发学生探索8的乘法口诀的兴趣。]
二、探索新知
1.操作感知。
请小朋友们也来摆一摆,用学具盒中的小正方体摆成一个大正方体,至少需要几块呢?(学生操作后汇报)
2.思考计算。
如果摆1个大正方体需要8个小正方体,摆2个这样的大正方体要用几个小正方体?摆3个呢?你是怎么算的?(学生可以用连加法计算)
3.填表找规律。
大正方体的个数
小正方体的个数
(1)观察表格,你发现了什么?(学生在小组内说说,再全班交流)
(2)能把表中求小正方体的个数用算式表示出来吗?
板书:1×8=8
2×8=16
……
8×8=64
3.尝试编口诀。
你能看着这些算式,编出8的乘法口诀吗?(同桌试着说说,教师巡视、指导。)
指名学生说,教师在乘法算式后空一段板书:一八得八,二八十六,……八八六十四。学生齐读乘法口诀。
5.寻找记忆乘法口诀的规律。
(1)师生对答8的乘法口诀,提问:怎样很快地记住8的乘法口诀?他们有规律吗?你有什么窍门?(学生交流各自的`方法,同桌再互相背一背。)
(2).你感觉哪句口诀难记?谁有办法帮助他?(让学生提问,师生共同寻找方法。如:怎样记住7个8是几?可以想:6个8是48,用48+8=56,或者用8个8是64,再减8得56等。)
(3)结合完成“想想做做”第2题
口答:7个8比6个8多(),比8个8少()。
[评析:让学生动手操作,自主探索8的乘法口诀,在独立思考、交流汇报中,寻找口诀规律,深化思维,培养自主学习能力和合作学习能力。]
三、巩固应用
1.卡片口算“想想做做”第1题。
做第一组题。提问:计算3×8用什么口诀?再加一个8就是几个8?你发现了什么?(如果不知道4×8等于几,只要记住三八二十四,再加一个8就是32。)继续完成第二、三组题。
2.完成“想想做做”第3题。
一八得八,这句口诀只能计算1×8吗?还可以计算什么?你发现一句口诀可以计算几条乘法算式?(完整板书设计如下:)
1×8=88×1=8一八得八
………………
8×8=64八八六十四
师生、同桌进行对口令练习。分别说出口诀和乘法算式。
3.完成“想想做做”第4题。
学生独立完成,再评讲。
4.完成“想想做做”第5、6题
(分别出示两幅画面)秋天,金黄的向日葵成熟了,小朋友们高高兴兴地来到种植园收向日葵。看,他们干得多欢!从图上,你了解了哪些数学信息?(学生交流,独立完成后说说想法。)
[评析:看图提出数学信息,可以培养学生仔细观察的良好习惯和问题意识,在交流和解决问题中进一步理解乘法的含义,发展学生的数学思考。]
三、总结延伸。
学了这节课,你有什么收获?(学生说感受,并一起回忆8的乘法口诀)在实际生活中,有哪些地方用到8的乘法口诀?
师:你们知道一只螃蟹几条腿,2只螃蟹呢?你能编一首儿歌吗?如:一只螃蟹8条腿,2只螃蟹16条腿,3只螃蟹24条腿,……8只螃蟹64条腿。(学生做拍手游戏)
[评析:在儿歌中结束全课,使课堂更有情趣,把数学知识延伸到课外,应用到生活中,是数学教育的最终目的。]
总评:本课根据乘法口诀的生成规律,让学生在动手操作中理解、思考,进一步体会乘法含义。通过让学生找表中的规律、找记忆口诀的规律,让学生交流想法、师生对口令、师生游戏、生生游戏等多种活动,从多层面上记忆、应用8的乘法口诀,给了学生充分的自主学习活动空间,激发了学生主体学习的热情,在自主探索、合作交流中,学生的自主学习能力得以提高,增强了合作学习的意识。整节课,情境设计注重与生活的紧密联系,学习活动注重丰富有趣,培养了学生对数学的良好学习情感和应用意识。
含0的乘法教案篇4
教学内容:
数松果(5的乘法口诀)
教学目标:
1、经历编制5的乘法口诀的过程,使学生知道5的乘法口诀的来源,初步体会口诀的优越性。
2、掌握5的乘法口诀,会用5的乘法口诀进行计算和解决简单的实际问题。
教学重难点:
1、掌握5的乘法口诀,会用5的乘法口诀进行计算和解决简单的实际问题。
2、培养学生有条理地思考问题的习惯,培养学生合作学习和用数学的意识,体验数学与日常生活的`密切联系。
教学准备:
主题图
教学过程:
一、复习准备。
出示下面各题,指名口算,并把加法算式改成乘法算式。
3+3+3=
2+2+2+2+2=
4+4+4+4=
7+7=
二、学习新知。
1、创设数松果情境,导入新课。
2、提出问题,探究新知。
(1)看着主题图,你能提出哪些数学问题?(一共有多少个松果?)
(2)有什么好办法解决这个问题吗?那可以怎样数呢?
①1,2,3,4,?1个1个地数。
②5+5,10+5,15+5,20+5,连续加5算出得数。
③5,10,15,20,?5个5个地数。
(3)大家的数法真多,你喜欢哪一种数法?为什么?
(4)你能用乘法算式表示吗?
生答师板书:15=525=1035=1545=20xx=2565=3075=3585=4095=45
(5)你知道这些算式表示的意义吗?
(6)刚才我们根据松果的排数,写出了这些乘法算式。看着这些算式,你有什么想法?(算式和得数都有一定的规律。)
(7)你能记住这些算式吗?动脑筋想想,然后4人小组商量一下,看谁有好办法记住这些算式和得数。(学生讨论。)
(8)利用口诀顺口、方便。1个5是5,为了记起来顺口,编成口诀是:一五得五。你们能编出下面的口诀吗?如果有困难,可以先看图数一数有几个5,再根据乘法算式编出相应的乘法口诀,能编几句就编几句。(学生以小组为单位尝试编制口诀,组织汇报,教师将相应的口诀卡片贴在黑板上。)
含0的乘法教案篇5
教学目标:
1.组织学生动手实践、自主探究,明确把谁看作单位“1”,引导学生采用数形结合的方法——画线段图分析数量之间的关系。
2.引导学生从分数乘法意义的角度思考,理解“求一个数的几分之几是多少”应该用乘法计算,学会解决“求一个数的几分之几是多少”的实际问题。
3.使学生能综合运用所学的知识解决一些简单的问题,逐渐形成技能,增强应用意识;引导学生形成一些解决问题的策略,促进学生分析、判断和推理能力的发展。
重点难点:
1.掌握解决求一个数的几分之几是多少的方法,能解决相关实际问题;
2.理解算理,会用线段图正确地分析题意。
教学方法:
讲授法、讨论法、谈话法、探究法
教学准备:
教师准备多媒体课件。
教学过程:
一、回顾旧知,导入新课
谈话:我们在信息窗1和信息窗2已经初步解决了分数乘整数和分数乘分数的问题,还会做吗?
出示练习:20的4/5是多少?6的2/3 是多少?
请同学说一说这两个题为什么用乘法计算。
谈话:同学们,我们知道,已知求一个数的几分之几是多少,用乘法计算。这是乘法意义的扩展出现的新问题,运用这一知识还可以解决什么问题呢?今天我们就来一起研究。
二、合作探究,获取新知
(一)创设情境,提出问题
谈话:在学校举行的泥塑大赛中,同学们制作出许多精美
的作品,请看大屏幕。
出示课本10页的情境图和信息。
谈话:从图中你获取了哪些信息?
谈话:根据上面的信息你能提出什么数学问题?
学生提出问题,教师板书:一班男生做了多少件?二班女生做了多少件?
谈话:同学们提的问题比较准确,下面我们分别来解决这些问题。
(二)探究方法,建立模型
1.解决第一个问题:一班男生做了多少件?
谈话:请同学们尝试用自己喜欢的方法先来分析题目中数量之间的关系,再试着解决这个问题,不仅要得出答案,还要把道理说清楚。
(1)讨论操作。学生分小组进行尝试活动,教师巡视指导,了解信息。
(2)小组内说想法。
(3)交流展示。指名到展示台前进行汇报。
方法一:画线段图分析数量关系
谈话:你是怎样画图的?先画什么?再画什么?怎样想的?
学生回答的过程中,教师重点引领学生理解谁是找单位“1”,如何找单位“1”?如何在线段图中表示出已知条件“3/5”?
谈话:线段图是个很好的工具,同学们用的非常棒!它可以清楚表示出题中数量间的关系,这个工具用的好,即使以后解决一些复杂的问题也会得心应手。
方法二:不借助于直观图,直接列式解决
谈话:你是怎样想的?教师适时引领:题中哪句话是关键句?谁是单位“1”?“3/5”这个分数在题中的具体意义是什么?为什么用乘法做?
(男生做了总数的3/5,总数是单位“1”,把总数平均分成5 份,求其中的3份,也就是求15的3/5是多少,所以15×3/5)
2.学生自己解决第二个问题:二班女生做了多少件?
谈话:小组交流,自己想办法来分析题意,解决问题。组织学生汇报交流,说自己的分析思路,其他小组可以给予完善补充。
着重引导学生理解:谁是单位“1”?怎么找单位“1”?为什么画两条线段?结合学生汇报,教师课件动态演示p11图示
(三)观察比较
谈话:你在分析解决这两个问题时,有哪些相同点?哪些不同点?
学生回答时,教师适时引领:相同点都是“求一个数的几分之几是多少”,用乘法做;不同点是第一组是部分与整体的关系,通常画一条线段图来表示它们之间的关系,第二组是两种量之间的关系,通常画两条线段图来表示它们之间的关系。画线段图时通常先画出表示单位“1”的量。
三、应用模型,解决问题
1.课本11页自主练习2:出示短吻鳄照片
帮助学生理解题意,引导学生利用画线段图的办法分析数量关系,自己列式解决问题。
2.自主练习4:这一题和第2题属于同一类型,都是研究部分与整体的关系,画一条线段图,让学生自主完成,全班交流自己的想法和思路。
3.自主练习
这一题与前两题有什么不同之处?研究的是两个数量之间的关系,应该怎样用线段图表示?
尝试自主解决,全班交流,说出自己的想法和思路。
四、引导总结,构建网络
谈话:我们应该如何解决“求一个数的几分之几是多少”的问题?(引导学生总结解决问题的方法)
五、作业布置
自主练习5、6题
板书设计:
求一个数的几分之几是多少”的实际问题
含0的乘法教案篇6
教学目标:
1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
2、知识目标:学习分数乘以分数的计算方法,学生能够熟练准确的计算出一个分数乘以另一个分数的结果。
3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
教学重难点:
学生能够熟练的计算出分数乘以分数的结果。
教学方法:
师生共同归纳和推理
教学准备:
教学参考书、教科书
教学过程:
一、复习导入
教师出示教学板书,请学生计算下列分数乘法运算题。
3/11×3 9/16×12 21×5/14
教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?
学生寻找完毕,纷纷举手准备回答问题。
教师提问学生回答问题。(整数乘以分数,整数乘以分子,分母不变。注意两种约分方式。)
二、讲授新课
教师出示课本例题:一张长方形的纸条,第一次剪去它的1/2,第二次剪去剩余部分的1/2。此时,剩下的部分占这张纸条的几分之几?如果第三次再剪去剩余部分的1/2,那么剩下的部分占这张纸条的几分之几?
教师让学生思考这个例题,并对学生进行提问。
1/2×1/2?分析第一次剪去它的1/2,第二次再剪去剩下的1/2,那就是1/2的.1/2。也就是1/2×1/2
教师让学生从图中看出是1/4,让学生从1/2×1/2=1/4中思考,分数乘以分数的运算规则,让学生同桌之间相互讨论。
教师提问学生说说分数乘以分数的运算法则。并对学生的说法给以鼓励。
教师和全班学生共同总结出分数乘以分数的运算法则:分数乘以分数,分子乘以分子作为分子,分母乘以分母作为分母。
验证法则:让学生折纸验证3/4×1/4?,并让学生分析为什么?
课堂讨论:让学生能够根据课本7页中的插图,说一说,红色部分占斜线部分的几分之几?占整张纸的几分之几?让学生进一步理解整体和部分的关系;初步理解求分数的几分之几是多少?
三、巩固练习
做课本8页试一试,1/4×2/3;3/5×2/9;7/8×5/14
让学生运用分数乘以分数的法则来进行计算。注意能约分的先约分,如:7/8×14/15中的7和14先约分。
四、课堂小结
同学们,这一节课你学到了哪些知识?(提问学生回答)
板书设计:
1/2×1/2=1/4;1/2×1/2=1×1/2×2=1/4
分数乘以分数的运算法则:分子相乘,分母相乘,能约分的要约分。